Jacobi Identity;
Contraction Operator;
Differential Function;
Variational Calculus;
Normal Algebra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We find an interpretation of the complex of variational calculus in terms of the Lie conformal algebra cohomology theory. This leads to a better understanding of both theories. In particular, we give an explicit construction of the Lie conformal algebra cohomology complex, and endow it with a structure of a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{g}}$$\end{document}-complex. On the other hand, we give an explicit construction of the complex of variational calculus in terms of skew-symmetric poly-differential operators.