Lie Conformal Algebra Cohomology and the Variational Complex

被引:0
|
作者
Alberto de Sole
Victor G. Kac
机构
[1] Universitá di Roma “La Sapienza”,Dipartimento di Matematica
[2] Cittá Universitaria,Department of Mathematics
[3] MIT,undefined
来源
关键词
Jacobi Identity; Contraction Operator; Differential Function; Variational Calculus; Normal Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We find an interpretation of the complex of variational calculus in terms of the Lie conformal algebra cohomology theory. This leads to a better understanding of both theories. In particular, we give an explicit construction of the Lie conformal algebra cohomology complex, and endow it with a structure of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document}-complex. On the other hand, we give an explicit construction of the complex of variational calculus in terms of skew-symmetric poly-differential operators.
引用
收藏
页码:667 / 719
页数:52
相关论文
共 50 条