K-theory of noncommutative Bernoulli shifts

被引:0
|
作者
Sayan Chakraborty
Siegfried Echterhoff
Julian Kranz
Shintaro Nishikawa
机构
[1] Indian Statistical Institute,Stat
[2] Universität Münster,Math Unit
来源
Mathematische Annalen | 2024年 / 388卷
关键词
Primary 46L80; 19K35; Secondary 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
For a large class of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras A, we calculate the K-theory of reduced crossed products A⊗G⋊rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\otimes G}\rtimes _rG$$\end{document} of Bernoulli shifts by groups satisfying the Baum–Connes conjecture. In particular, we give explicit formulas for finite-dimensional C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the K-theory of reduced C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras of wreath products H≀G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\wr G$$\end{document} for large classes of groups H and G. Our methods use a generalization of techniques developed by the second named author together with Joachim Cuntz and Xin Li, and a trivialization theorem for finite group actions on UHF algebras developed in a companion paper by the third and fourth named authors.
引用
收藏
页码:2671 / 2703
页数:32
相关论文
共 50 条
  • [41] ALGEBRAIC K-THEORY EVENTUALLY SURJECTS ONTO TOPOLOGICAL K-THEORY
    DWYER, W
    FRIEDLANDER, E
    SNAITH, V
    THOMASON, R
    INVENTIONES MATHEMATICAE, 1982, 66 (03) : 481 - 491
  • [42] ETALE K-THEORY .2. CONNECTIONS WITH ALGEBRAIC K-THEORY
    FRIEDLANDER, EM
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1982, 15 (02): : 231 - 256
  • [43] Graded K-theory, filtered K-theory and the classification of graph algebras
    Ara, Pere
    Hazrat, Roozbeh
    Li, Huanhuan
    arXiv, 2019,
  • [44] Graded K-theory, filtered K-theory and the classification of graph algebras
    Ara, Pere
    Hazrat, Roozbeh
    Li, Huanhuan
    ANNALS OF K-THEORY, 2022, 7 (04) : 731 - 795
  • [45] Finite group extensions of shifts of finite type: K-theory, Parry and Livsic
    Boyle, Mike
    Schmieding, Scott
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1026 - 1059
  • [46] K-THEORY OF RINGS
    GERSTEN, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A82 - A82
  • [47] K-THEORY OF ENDOMORPHISMS
    GRAYSON, DR
    JOURNAL OF ALGEBRA, 1977, 48 (02) : 439 - 446
  • [48] K-THEORY AND REALITY
    ATIYAH, MF
    QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (68): : 367 - &
  • [49] On the K-theory of pullbacks
    Land, Markus
    Tamme, Georg
    ANNALS OF MATHEMATICS, 2019, 190 (03) : 877 - 930
  • [50] ELLIPTICITY AND K-THEORY
    OHANA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (10): : 1037 - 1040