K-theory of noncommutative Bernoulli shifts

被引:0
|
作者
Sayan Chakraborty
Siegfried Echterhoff
Julian Kranz
Shintaro Nishikawa
机构
[1] Indian Statistical Institute,Stat
[2] Universität Münster,Math Unit
来源
Mathematische Annalen | 2024年 / 388卷
关键词
Primary 46L80; 19K35; Secondary 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
For a large class of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras A, we calculate the K-theory of reduced crossed products A⊗G⋊rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\otimes G}\rtimes _rG$$\end{document} of Bernoulli shifts by groups satisfying the Baum–Connes conjecture. In particular, we give explicit formulas for finite-dimensional C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the K-theory of reduced C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras of wreath products H≀G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\wr G$$\end{document} for large classes of groups H and G. Our methods use a generalization of techniques developed by the second named author together with Joachim Cuntz and Xin Li, and a trivialization theorem for finite group actions on UHF algebras developed in a companion paper by the third and fourth named authors.
引用
收藏
页码:2671 / 2703
页数:32
相关论文
共 50 条
  • [31] Twisted K-Theory and K-Theory of Bundle Gerbes
    Peter Bouwknegt
    Alan L. Carey
    Varghese Mathai
    Michael K. Murray
    Danny Stevenson
    Communications in Mathematical Physics, 2002, 228 : 17 - 49
  • [32] GENERATING MODULES EFFICIENTLY - ALGEBRAIC K-THEORY FOR NONCOMMUTATIVE NOETHERIAN-RINGS
    STAFFORD, JT
    JOURNAL OF ALGEBRA, 1981, 69 (02) : 312 - 346
  • [33] K-Theory
    Abrams, Gene
    Ara, Pere
    Siles Molina, Mercedes
    LEAVITT PATH ALGEBRAS, 2017, 2191 : 219 - 257
  • [34] DERIVATIVE FUNCTORS AND K-THEORY . AXIOMATIC CHARACTERIZATION OF K-THEORY
    KAROUBI, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (10): : 345 - &
  • [35] The localization sequence for the algebraic K-theory of topological K-theory
    Blumberg, Andrew J.
    Mandell, Michael A.
    ACTA MATHEMATICA, 2008, 200 (02) : 155 - 179
  • [36] ALGEBRAIC K-THEORY AND TOPOGRAPHY-2 K-THEORY
    KAROUBI, M
    VILLAMAY.O
    MATHEMATICA SCANDINAVICA, 1973, 32 (01) : 57 - 86
  • [37] RELATIONS BETWEEN ALGEBRAIC K-THEORY AND HERMITIAN K-THEORY
    KAROUBI, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 34 (2-3) : 259 - 263
  • [38] On some noncommutative algebras related to K-theory of flag varieties. Part I
    Kirillov, AN
    Maeno, T
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (60) : 3753 - 3789
  • [39] Unified topological characterization of electronic states in spin textures from noncommutative K-theory
    Lux, Fabian R.
    Ghosh, Sumit
    Prass, Pascal
    Prodan, Emil
    Mokrousov, Yuriy
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [40] ACTIONS OF K(π, n) SPACES ON K-THEORY AND UNIQUENESS OF TWISTED K-THEORY
    Antieau, Benjamin
    Gepner, David
    Gomez, Jose Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) : 3631 - 3648