K-theory of noncommutative Bernoulli shifts

被引:0
|
作者
Sayan Chakraborty
Siegfried Echterhoff
Julian Kranz
Shintaro Nishikawa
机构
[1] Indian Statistical Institute,Stat
[2] Universität Münster,Math Unit
来源
Mathematische Annalen | 2024年 / 388卷
关键词
Primary 46L80; 19K35; Secondary 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
For a large class of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras A, we calculate the K-theory of reduced crossed products A⊗G⋊rG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\otimes G}\rtimes _rG$$\end{document} of Bernoulli shifts by groups satisfying the Baum–Connes conjecture. In particular, we give explicit formulas for finite-dimensional C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the K-theory of reduced C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras of wreath products H≀G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\wr G$$\end{document} for large classes of groups H and G. Our methods use a generalization of techniques developed by the second named author together with Joachim Cuntz and Xin Li, and a trivialization theorem for finite group actions on UHF algebras developed in a companion paper by the third and fourth named authors.
引用
收藏
页码:2671 / 2703
页数:32
相关论文
共 50 条
  • [1] K -theory of noncommutative Bernoulli shifts
    Chakraborty, Sayan
    Echterhoff, Siegfried
    Kranz, Julian
    Nishikawa, Shintaro
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2627 - 2669
  • [2] Noncommutative tachyons and K-theory
    Harvey, JA
    Moore, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (07) : 2765 - 2780
  • [3] Noncommutative differential K-theory
    Park, Byungdo
    Parzygnat, Arthur J.
    Redden, Corbett
    Stoffel, Augusto
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 174
  • [4] K-theory of noncommutative lattices
    Ercolessi, E
    Landi, G
    Landi, G
    Teotonio-Sobrinho, P
    K-THEORY, 1999, 18 (04): : 339 - 362
  • [5] K-theory of noncommutative Bieberbach manifolds
    P. Olczykowski
    A. Sitarz
    Russian Journal of Mathematical Physics, 2015, 22 : 389 - 399
  • [6] K-THEORY AND LOCALIZATION OF NONCOMMUTATIVE RINGS
    GRAYSON, DR
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1980, 18 (02) : 125 - 127
  • [7] K-theory of noncommutative Bieberbach manifolds
    Olczykowski, P.
    Sitarz, A.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (03) : 389 - 399
  • [8] Topological K-theory of complex noncommutative spaces
    Blanc, Anthony
    COMPOSITIO MATHEMATICA, 2016, 152 (03) : 489 - 555
  • [9] K-THEORY OF ENDOMORPHISMS VIA NONCOMMUTATIVE MOTIVES
    Blumberg, Andrew J.
    Gepner, David
    Tabuada, Goncalo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) : 1435 - 1465
  • [10] Noncommutative localisation in algebraic K-theory I
    Neeman, A
    Ranicki, A
    GEOMETRY & TOPOLOGY, 2004, 8 : 1385 - 1425