Equivalence classes of multiplicative central (pn, pn, pn, 1)-relative difference sets

被引:0
|
作者
D. G. Farmer
K. J. Horadam
机构
[1] RMIT University–City Campus,Mathematical Sciences, SMGS
来源
关键词
Relative difference set; Equivalence class; Presemifield; Primary 05B10; Secondary 05B25;
D O I
暂无
中图分类号
学科分类号
摘要
We show by explicit construction that the equivalence classes of multiplicative central (pn, pn, pn, 1)-RDSs relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb Z}_p^n$\end{document} in groups E with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E/{\mathbb Z}_p^n \cong {\mathbb Z}_p^n$\end{document} are in one-to-one correspondence with the strong isotopism classes of presemifields of order pn. We also show there are 1,446 equivalence classes of central (16, 16, 16, 1)-RDS relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb Z}_2^4$\end{document}, in groups E for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E/{\mathbb Z}_2^4 \cong {\mathbb Z}_2^4$\end{document}. Only one is abelian.
引用
收藏
页码:17 / 28
页数:11
相关论文
共 50 条
  • [31] On completely decomposable defining equations of finite sets in Pn
    Jung, Jaeheun
    Park, Euisung
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2527 - 2533
  • [32] On the crosscorrelation of sequences with the decimation factor d = pn+1/p+1-pn-1/2
    Hu, Z
    Li, X
    Mills, D
    Müller, E
    Sun, W
    Willems, W
    Yang, Y
    Zhang, Z
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 12 (03) : 255 - 263
  • [33] 3维格Pn1×Pn2×Pn3和台阶图的控制满划分
    彭锦
    钱金水
    黄冈师范学院学报, 1999, (04) : 6 - 9
  • [35] Stable expression and characterization of human PN1 and PN3 sodium channels
    Akiba, I
    Seki, T
    Mori, M
    Iizuka, M
    Nishimura, S
    Sasaki, S
    Imoto, K
    Barsoumian, EL
    RECEPTORS & CHANNELS, 2003, 9 (05): : 291 - 299
  • [36] ON IRRATIONALITY OF HYPERSURFACES IN Pn+1
    Yang, Ruijie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 971 - 976
  • [37] Inhibiting NOB under alternating starvation by operating the PN1/PN2 system
    Dong, Li
    Ji-Yuan, Ren
    Jie, Zhang
    Zhongguo Huanjing Kexue/China Environmental Science, 2024, 44 (01): : 202 - 210
  • [38] 交替饥饿下PN1/PN2系统抑制NOB研究
    李冬
    任纪元
    张杰
    中国环境科学 , 2024, (01) : 202 - 210
  • [39] TESTING AND TRANSFER OF 0PN AND 1PN EMBRYOS: WHAT CAN WE LEARN?
    Jordan, Amy
    Toh, Eugene
    Nguyen, Kenneth
    Venier, Bill
    Cinnioglu, Cengiz
    FERTILITY AND STERILITY, 2022, 118 (05) : E15 - E15
  • [40] Dispersion analysis of the Pn-Pn-1DG mixed finite element pair for atmospheric modelling
    Melvin, Thomas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 342 - 365