Equivalence classes of multiplicative central (pn, pn, pn, 1)-relative difference sets

被引:0
|
作者
D. G. Farmer
K. J. Horadam
机构
[1] RMIT University–City Campus,Mathematical Sciences, SMGS
来源
关键词
Relative difference set; Equivalence class; Presemifield; Primary 05B10; Secondary 05B25;
D O I
暂无
中图分类号
学科分类号
摘要
We show by explicit construction that the equivalence classes of multiplicative central (pn, pn, pn, 1)-RDSs relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb Z}_p^n$\end{document} in groups E with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E/{\mathbb Z}_p^n \cong {\mathbb Z}_p^n$\end{document} are in one-to-one correspondence with the strong isotopism classes of presemifields of order pn. We also show there are 1,446 equivalence classes of central (16, 16, 16, 1)-RDS relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb Z}_2^4$\end{document}, in groups E for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E/{\mathbb Z}_2^4 \cong {\mathbb Z}_2^4$\end{document}. Only one is abelian.
引用
收藏
页码:17 / 28
页数:11
相关论文
共 50 条
  • [21] A Second Main Theorem on Pn for difference operator
    Wong Pit-Mann
    Law Hiu-Fai
    Wong, Philip P. W.
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (12): : 2751 - 2758
  • [22] A Second Main Theorem on Pn for difference operator
    WONG Pit-Mann
    LAW Hiu-Fai
    WONG Philip P.W.
    Science China Mathematics, 2009, (12) : 2751 - 2758
  • [23] Starlight 1 - Hadyn,PN
    Hamburger, S
    LIBRARY JOURNAL, 1996, 121 (13) : 119 - 119
  • [24] K-dominating sets of P2k+2 x Pn and Pm x Pn
    Klobucar, A
    ARS COMBINATORIA, 2001, 58 : 279 - 288
  • [25] A remark on lim n → ∞ pn√p1p2 ... pn = e
    Farhadian, Reza
    MATHEMATICAL GAZETTE, 2021, 105 (563): : 311 - 312
  • [26] LOCATION OF PN CENTRAL STARS ON THE HR DIAGRAM
    CAZETTA, JO
    MACIEL, WJ
    ASTRONOMY & ASTROPHYSICS, 1994, 290 (03) : 936 - 940
  • [27] CASTELNUOVO REGULARITY AND COHOMOLOGICAL PROPERTIES OF SETS OF POINTS IN PN
    STUCKRAD, J
    VOGEL, W
    MATHEMATISCHE ANNALEN, 1989, 284 (03) : 487 - 501
  • [28] SOME PROBLEMS AND RESULTS ON FINITE SETS OF POINTS IN PN
    MAROSCIA, P
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 290 - 314
  • [29] Central configurations for (pN + gN)-body problems
    Zhao, Furong
    Chen, Jian
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 121 (01): : 101 - 106
  • [30] 3维格Pn1Pn2×Pn3和台阶图的控制满划分
    彭锦
    钱金水
    黄冈职业技术学院学报, 1999, (04) : 6 - 9