Semi-classical dispersive estimates

被引:0
|
作者
Fernando Cardoso
Claudio Cuevas
Georgi Vodev
机构
[1] Universidade Federal de Pernambuco,Departamento de Matemática
[2] Université de Nantes,Département de Mathématiques, UMR 6629 du CNRS
来源
Mathematische Zeitschrift | 2014年 / 278卷
关键词
Dispersion Estimates; Short-range Perturbation; Euclidean Laplacian; Magnetic Potential; Self-adjoint Realization;
D O I
暂无
中图分类号
学科分类号
摘要
We prove dispersive estimates for the wave group eitP(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{it\sqrt{P(h)}}$$\end{document} and the Schrödinger group eitP(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{itP(h)}$$\end{document}, where P(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(h)$$\end{document} is a self-adjoint, elliptic second-order differential operator depending on a parameter 0<h≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<h\le 1$$\end{document}, which is supposed to be a short-range perturbation of -h2Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-h^2\Delta $$\end{document}, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} being the Euclidean Laplacian. In particular, applications are made to non-trapping metric perturbations and to perturbations by a magnetic potential.
引用
收藏
页码:251 / 277
页数:26
相关论文
共 50 条