Semi-classical dispersive estimates

被引:0
|
作者
Fernando Cardoso
Claudio Cuevas
Georgi Vodev
机构
[1] Universidade Federal de Pernambuco,Departamento de Matemática
[2] Université de Nantes,Département de Mathématiques, UMR 6629 du CNRS
来源
Mathematische Zeitschrift | 2014年 / 278卷
关键词
Dispersion Estimates; Short-range Perturbation; Euclidean Laplacian; Magnetic Potential; Self-adjoint Realization;
D O I
暂无
中图分类号
学科分类号
摘要
We prove dispersive estimates for the wave group eitP(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{it\sqrt{P(h)}}$$\end{document} and the Schrödinger group eitP(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{itP(h)}$$\end{document}, where P(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(h)$$\end{document} is a self-adjoint, elliptic second-order differential operator depending on a parameter 0<h≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<h\le 1$$\end{document}, which is supposed to be a short-range perturbation of -h2Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-h^2\Delta $$\end{document}, Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} being the Euclidean Laplacian. In particular, applications are made to non-trapping metric perturbations and to perturbations by a magnetic potential.
引用
收藏
页码:251 / 277
页数:26
相关论文
共 50 条
  • [21] Eigenvalue estimates in the semi-classical limit for Pauli and Dirac operators with a magnetic field
    Evans, WD
    Lewis, RT
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1981): : 183 - 217
  • [22] Semi-classical signal analysis
    Taous-Meriem Laleg-Kirati
    Emmanuelle Crépeau
    Michel Sorine
    Mathematics of Control, Signals, and Systems, 2013, 25 : 37 - 61
  • [23] SEMI-CLASSICAL MODEL FOR ATOMS
    PEARSON, RG
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (07): : 4002 - 4005
  • [24] A healthier semi-classical dynamics
    Layton, Isaac
    Oppenheim, Jonathan
    Weller-Davies, Zachary
    QUANTUM, 2024, 8
  • [25] SEMI-CLASSICAL CALCULATION OF OVERTONE SPECTRA
    KOSZYKOWSKI, ML
    NOID, DW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 181 (MAR): : 27 - PHYS
  • [26] Semi-classical measures and eigenvalue crossings
    Fermanian-Kammerer, C
    Gérard, P
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (01): : 123 - 168
  • [27] Semi-Classical Electrodynamics and the Casimir Effect
    Bostrom, Mathias
    Gholamhosseinian, Ayda
    Pal, Subhojit
    Li, Yang
    Brevik, Iver
    PHYSICS, 2024, 6 (01): : 456 - 467
  • [28] A semi-classical limit and its applications
    Yu, YL
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 315 - 335
  • [29] Semi-classical shears and effective forces
    Macchiavelli, AO
    Clark, RM
    Deleplanque, MA
    Diamond, RT
    Fallon, P
    Lee, IY
    Stephens, FS
    Vetter, K
    NUCLEAR STRUCTURE 98, 1999, 481 : 517 - 526
  • [30] SEMI-CLASSICAL AND QUANTAL CALCULATION OF RESONANCES
    BABAMOV, V
    KOSZYKOWSKI, ML
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 181 (MAR): : 22 - PHYS