Quantifying the effect of experimental perturbations at single-cell resolution

被引:0
|
作者
Daniel B. Burkhardt
Jay S. Stanley
Alexander Tong
Ana Luisa Perdigoto
Scott A. Gigante
Kevan C. Herold
Guy Wolf
Antonio J. Giraldez
David van Dijk
Smita Krishnaswamy
机构
[1] Yale University,Department of Genetics
[2] Yale University,Computational Biology & Bioinformatics Program
[3] Yale University,Department of Computer Science
[4] Yale University,Department of Immunobiology
[5] Yale University,Department of Internal Medicine (Cardiology)
[6] Université de Montréal,Department of Mathematics and Statistics
[7] Mila – Quebec AI Institute,undefined
来源
Nature Biotechnology | 2021年 / 39卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Current methods for comparing single-cell RNA sequencing datasets collected in multiple conditions focus on discrete regions of the transcriptional state space, such as clusters of cells. Here we quantify the effects of perturbations at the single-cell level using a continuous measure of the effect of a perturbation across the transcriptomic space. We describe this space as a manifold and develop a relative likelihood estimate of observing each cell in each of the experimental conditions using graph signal processing. This likelihood estimate can be used to identify cell populations specifically affected by a perturbation. We also develop vertex frequency clustering to extract populations of affected cells at the level of granularity that matches the perturbation response. The accuracy of our algorithm at identifying clusters of cells that are enriched or depleted in each condition is, on average, 57% higher than the next-best-performing algorithm tested. Gene signatures derived from these clusters are more accurate than those of six alternative algorithms in ground truth comparisons.
引用
收藏
页码:619 / 629
页数:10
相关论文
共 50 条
  • [41] Inferring cell-cell communication at single-cell resolution
    Wilk, Aaron J.
    Blish, Catherine A.
    NATURE BIOTECHNOLOGY, 2024, 42 (03) : 390 - 391
  • [42] Protocol for quantifying murine cardiomyocyte cell division by single-cell suspension
    Swift, Samantha K.
    Purdy, Alexandra L.
    Patterson, Michaela
    STAR PROTOCOLS, 2024, 5 (04):
  • [43] Comparative analysis of cell–cell communication at single-cell resolution
    Aaron J. Wilk
    Alex K. Shalek
    Susan Holmes
    Catherine A. Blish
    Nature Biotechnology, 2024, 42 : 470 - 483
  • [44] Single-Cell Drug Perturbations Prediction Using Machine Learning
    Prajapati, Manish
    Baliarsingh, Santos Kumar
    Dev, Prabhu Prasad
    Nayak, Sankalp
    Biswal, Manas Ranjan
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT IV, 2024, 2093 : 36 - 49
  • [45] Individualized drug combination based on single-cell drug perturbations
    Anchang, Benedict
    Davis, Kara
    Fienberg, Harris
    Bendall, Sean
    Karacosta, Loukia
    Nolan, Garry
    Plevritis, Sylvia K.
    CANCER RESEARCH, 2018, 78 (13)
  • [46] Painting a developmental landscape at single-cell resolution
    Timmermans, Marja C. P.
    NATURE REVIEWS GENETICS, 2023, 24 (08) : 493 - 493
  • [47] Deconstructing Pulmonary Fibrosis at Single-Cell Resolution
    Habermann, A.
    Gutierrez, A. J.
    Bui, L. T.
    Yahn, S. L.
    Winters, N. I.
    Calvi, C. L.
    Peter, L.
    Chung, M.
    Taylor, C. J.
    Ding, G.
    Wood, L.
    Bacchetta, M. J.
    Shaver, C. M.
    Ware, L. B.
    Bremmer, R. M.
    Walia, R.
    Blackwell, T. S.
    Banovich, N.
    Kropski, J. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [48] DISSECTING HUMAN PLEURA AT SINGLE-CELL RESOLUTION
    Obacz, J.
    Adams, T. S.
    Schupp, J. C.
    Kaminski, N.
    Aresu, G.
    Coonar, A. S.
    Peryt, A.
    Rassl, D. M.
    Rintoul, R. C.
    Marciniak, S. J.
    THORAX, 2021, 76 : A63 - A63
  • [49] Single-cell RNA sequencing at isoform resolution
    Evan Z. Macosko
    Nature Biotechnology, 2020, 38 : 697 - 698
  • [50] Profiling Chromatin Accessibility at Single-cell Resolution
    Sarthak Sinha
    Ansuman T.Satpathy
    Weiqiang Zhou
    Hongkai Ji
    Jo A.Stratton
    Arzina Jaffer
    Nizar Bahlis
    Sorana Morrissy
    Jeff A.Biernaskie
    Genomics,Proteomics & Bioinformatics, 2021, 19 (02) : 172 - 190