Quantifying the effect of experimental perturbations at single-cell resolution

被引:0
|
作者
Daniel B. Burkhardt
Jay S. Stanley
Alexander Tong
Ana Luisa Perdigoto
Scott A. Gigante
Kevan C. Herold
Guy Wolf
Antonio J. Giraldez
David van Dijk
Smita Krishnaswamy
机构
[1] Yale University,Department of Genetics
[2] Yale University,Computational Biology & Bioinformatics Program
[3] Yale University,Department of Computer Science
[4] Yale University,Department of Immunobiology
[5] Yale University,Department of Internal Medicine (Cardiology)
[6] Université de Montréal,Department of Mathematics and Statistics
[7] Mila – Quebec AI Institute,undefined
来源
Nature Biotechnology | 2021年 / 39卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Current methods for comparing single-cell RNA sequencing datasets collected in multiple conditions focus on discrete regions of the transcriptional state space, such as clusters of cells. Here we quantify the effects of perturbations at the single-cell level using a continuous measure of the effect of a perturbation across the transcriptomic space. We describe this space as a manifold and develop a relative likelihood estimate of observing each cell in each of the experimental conditions using graph signal processing. This likelihood estimate can be used to identify cell populations specifically affected by a perturbation. We also develop vertex frequency clustering to extract populations of affected cells at the level of granularity that matches the perturbation response. The accuracy of our algorithm at identifying clusters of cells that are enriched or depleted in each condition is, on average, 57% higher than the next-best-performing algorithm tested. Gene signatures derived from these clusters are more accurate than those of six alternative algorithms in ground truth comparisons.
引用
收藏
页码:619 / 629
页数:10
相关论文
共 50 条
  • [21] Haplotype resolution at the single-cell level
    Adey, Andrew C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (47) : 12362 - 12364
  • [22] IMMUNE AGING AT SINGLE-CELL RESOLUTION
    Artyomov, Maxim
    INNOVATION IN AGING, 2023, 7 : 433 - 433
  • [23] Immune ageing at single-cell resolution
    Mogilenko, Denis A.
    Shchukina, Irina
    Artyomov, Maxim N.
    NATURE REVIEWS IMMUNOLOGY, 2022, 22 (08) : 484 - 498
  • [24] Aging in microglia at single-cell resolution
    Alsema, A.
    Jiang, Q.
    Wachter, A.
    Kracht, L.
    Gerrits, E.
    Woodbury, M.
    Brouwer, N.
    Kooistra, S.
    Miedema, A.
    Dubbelaar, M.
    Heng, Y.
    Xi, S.
    Kummer, M.
    Biber, K.
    Moeller, T.
    Eggen, B.
    Boddeke, E.
    GLIA, 2019, 67 : E749 - E749
  • [25] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Y.
    Lanin, A.
    Fedotov, I.
    Roshchin, M.
    Balaban, P.
    Zheltikov, A.
    Belousov, V.
    FEBS JOURNAL, 2017, 284 : 32 - 32
  • [26] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Yulia G.
    Lanin, Aleksandr A.
    Fedotov, Ilya V.
    Roshchin, Matvey
    Kelmanson, Ilya V.
    Kulik, Dmitry
    Bogdanova, Yulia A.
    Shokhina, Arina G.
    Bilan, Dmitry S.
    Staroverov, Dmitry B.
    Balaban, Pavel M.
    Fedotov, Andrei B.
    Sidorov-Biryukov, Dmitry A.
    Nikitin, Evgeny S.
    Zheltikov, Aleksei M.
    Belousov, Vsevolod V.
    NATURE COMMUNICATIONS, 2017, 8
  • [27] Evolutionary neurogenomics at single-cell resolution
    Caglayan, Emre
    Konopka, Genevieve
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2024, 88
  • [28] Adipose tissue at single-cell resolution
    Maniyadath, Babukrishna
    Zhang, Qianbin
    Gupta, Rana K.
    Mandrup, Susanne
    CELL METABOLISM, 2023, 35 (03) : 386 - 413
  • [29] Deconstructing gastrulation at single-cell resolution
    Stern, Tomer
    Shvartsman, Stanislav Y.
    Wieschaus, Eric F.
    CURRENT BIOLOGY, 2022, 32 (08) : 1861 - +
  • [30] Thermogenetic neurostimulation with single-cell resolution
    Yulia G. Ermakova
    Aleksandr A. Lanin
    Ilya V. Fedotov
    Matvey Roshchin
    Ilya V. Kelmanson
    Dmitry Kulik
    Yulia A. Bogdanova
    Arina G. Shokhina
    Dmitry S. Bilan
    Dmitry B. Staroverov
    Pavel M. Balaban
    Andrei B. Fedotov
    Dmitry A. Sidorov-Biryukov
    Evgeny S. Nikitin
    Aleksei M. Zheltikov
    Vsevolod V. Belousov
    Nature Communications, 8