Reconstruction of extended Petri nets from time-series data by using logical control functions

被引:0
|
作者
Markus Durzinsky
Wolfgang Marwan
Annegret Wagler
机构
[1] Otto-von-Guericke Universität Magdeburg,Magdeburg Centre for Systems Biology (MaCS)
[2] Université Blaise Pascal (Clermont-Ferrand II),Faculty of Sciences/LIMOS
来源
Journal of Mathematical Biology | 2013年 / 66卷
关键词
Reverse engineering; Petri nets; Read arcs and inhibitory arcs; Phosphate regulatory network; 68R05; 92C42;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to extend a previously presented algorithm (Durzinsky et al. 2008b in Computational methods in systems biology, LNCS, vol 5307. Springer, Heidelberg, pp 328–346; Marwan et al. 2008 in Math Methods Oper Res 67:117–132) for the reconstruction of standard place/transition Petri nets from time-series of experimental data sets. This previously reported method finds provably all networks capable to reproduce the experimental observations. In this paper we enhance this approach to generate extended Petri nets involving mechanisms formally corresponding to catalytic or inhibitory dependencies that mediate the involved reactions. The new algorithm delivers the set of all extended Petri nets being consistent with the time-series data used for reconstruction. It is illustrated using the phosphate regulatory network of enterobacteria as a case study.
引用
收藏
页码:203 / 223
页数:20
相关论文
共 50 条
  • [11] Synchronization and control of spatiotemporal chaos using time-series data from local regions
    Parekh, N
    Kumar, VR
    Kulkami, BD
    CHAOS, 1998, 8 (01) : 300 - 306
  • [13] Indoor environment data time-series reconstruction using autoencoder neural networks
    Liguori, Antonio
    Markovic, Romana
    Dam, Thi Thu Ha
    Frisch, Jerome
    van Treeck, Christoph
    Causone, Francesco
    BUILDING AND ENVIRONMENT, 2021, 191
  • [14] Supervisory control of time Petri nets using net unfolding
    Buy, U
    Darabi, H
    Lehene, M
    Venepally, V
    Proceedings of the 29th Annual International Computer Software and Applications Conference, Workshops and Fast Abstracts, 2005, : 97 - 100
  • [15] Final-State Control Using Polynomial and Time-Series Data
    Hirata, M.
    Ueno, F.
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (07) : 1944 - 1950
  • [16] Estimation of drift and diffusion functions from unevenly sampled time-series data
    Davis, William
    Buffett, Bruce
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [17] Data simulation and regulatory network reconstruction from time-series microarray data using stepwise multiple linear regression
    Zhou, Yiqian
    Qureshi, Rehman
    Sacan, Ahmet
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2012, 1 (1-2): : 3 - 17
  • [18] Data simulation and regulatory network reconstruction from time-series microarray data using stepwise multiple linear regression
    Yiqian Zhou
    Rehman Qureshi
    Ahmet Sacan
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2012, 1 (1-2) : 3 - 17
  • [19] Evaluating Impact Using Time-Series Data
    Wauchope, Hannah S.
    Amano, Tatsuya
    Geldmann, Jonas
    Johnston, Alison
    Simmons, Benno, I
    Sutherland, William J.
    Jones, Julia P. G.
    TRENDS IN ECOLOGY & EVOLUTION, 2021, 36 (03) : 196 - 205
  • [20] ATTRACTOR RECONSTRUCTION FROM FILTERED CHAOTIC TIME-SERIES
    CHENNAOUI, A
    PAWELZIK, K
    LIEBERT, W
    SCHUSTER, HG
    PFISTER, G
    PHYSICAL REVIEW A, 1990, 41 (08): : 4151 - 4159