Evaluating Impact Using Time-Series Data

被引:87
|
作者
Wauchope, Hannah S. [1 ,2 ]
Amano, Tatsuya [3 ,4 ]
Geldmann, Jonas [1 ,5 ]
Johnston, Alison [1 ,6 ]
Simmons, Benno, I [1 ,2 ,7 ]
Sutherland, William J. [1 ]
Jones, Julia P. G. [8 ]
机构
[1] Univ Cambridge, Dept Zool, Conservat Sci Grp, Cambridge CB2 3QZ, England
[2] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn TR10 9FE, England
[3] Univ Queensland, Sch Biol Sci, Brisbane, Qld, Australia
[4] Univ Queensland, Ctr Biodivers & Conservat Sci, Brisbane, Qld, Australia
[5] Univ Copenhagen, Ctr Macroecol Evolut & Climate, Globe Inst, Copenhagen, Denmark
[6] Cornell Univ, Lab Ornithol, New York, NY USA
[7] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
[8] Bangor Univ, Sch Nat Sci, Bangor LL57 2UW, Gwynedd, Wales
基金
澳大利亚研究理事会;
关键词
SEGMENTED REGRESSION; PROTECTED AREAS; BACI; FRAGMENTATION; PROGRAM; ECOLOGY; DESIGNS; TERM;
D O I
10.1016/j.tree.2020.11.001
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Humanity's impact on the environment is increasing, as are strategies to conserve biodiversity, but a lack of understanding about how interventions affect ecological and conservation outcomes hampers decision-making. Time series are often used to assess impacts, but ecologists tend to compare average values from before to after an impact; overlooking the potential for the intervention to elicit a change in trend. Without methods that allow for a range of responses, erroneous conclusions can be drawn, especially for large, multi-time-series datasets, which are increasingly available. Drawing on literature in other disciplines and pioneering work in ecology, we present a standardised framework to robustly assesses how interventions, like natural disasters or conservation policies, affect ecological time series.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [1] Metrics for Evaluating Synthetic Time-Series Data of Battery
    Seol, Sujin
    Yoon, Jaewoo
    Lee, Jungeun
    Kim, Byeongwoo
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [2] Evaluating the Privacy and Utility of Time-Series Data Perturbation Algorithms
    Roman, Adrian-Silviu
    MATHEMATICS, 2023, 11 (05)
  • [3] Evaluating multivariate time-series clustering using simulated ecological momentary assessment data
    Ntekouli, Mandani
    Spanakis, Gerasimos
    Waldorp, Lourens
    Roefs, Anne
    MACHINE LEARNING WITH APPLICATIONS, 2023, 14
  • [4] Classification of Time-Series Data using ptSTL
    Ergurtuna, Mert
    Gol, Ebru Aydin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [5] Evaluating consumptive and nonconsumptive predator effects on prey density using field time-series data
    Marino, J. A., Jr.
    Peacor, S. D.
    Bunnell, D. B.
    Vanderploeg, H. A.
    Pothoven, S. A.
    Elgin, A. K.
    Bence, J. R.
    Jiao, J.
    Ionides, E. L.
    ECOLOGY, 2019, 100 (03)
  • [6] Time-Series Data Prediction Using Fuzzy Data Dredging
    Jain, Vinesh
    Rathi, Rakesh
    Gautam, Anshuman Kr
    3RD NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE 2012), 2012,
  • [7] AN ANALYSIS OF FRINGE BENEFITS USING TIME-SERIES DATA
    ALPERT, WT
    APPLIED ECONOMICS, 1987, 19 (01) : 1 - 16
  • [8] Using Time-Series Databases for Energy Data Infrastructures
    Hadjichristofi, Christos
    Diochnos, Spyridon
    Andresakis, Kyriakos
    Vescoukis, Vassilios
    ENERGIES, 2024, 17 (21)
  • [9] Using signature files for querying time-series data
    Andre-Jonsson, H
    Badal, DZ
    PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1997, 1263 : 211 - 220
  • [10] Analysis of Time-Series Data Using the Rough Set
    Matsumoto, Yoshiyuki
    Watada, Junzo
    INNOVATION IN MEDICINE AND HEALTHCARE 2015, 2016, 45 : 139 - 148