Time-Series Data Prediction Using Fuzzy Data Dredging

被引:0
|
作者
Jain, Vinesh [1 ]
Rathi, Rakesh [1 ]
Gautam, Anshuman Kr [1 ]
机构
[1] Govt Engn Coll Ajmer, Dept Comp Engg, Ajmer, Rajasthan, India
关键词
Association rule; Data dredging; Fuzzy set; Standard deviation; Stock market; Time series;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As information technology (I.T.) is progressing rapidly day by day a massive amount of data is emerging at a fast rate in different sectors. Data dredging provides techniques to have relevant data from a large amount of data for the task. This paper introduces an algorithm for fuzzy data dredging through which fuzzy association rules can be generated for time series data. Time series data can be stock market data, climatic observed data or any sequence data which has some trend or pattern in it. In the past many approaches based on mathematical models were suggested for dredging association rules but they were quite complex for the users. This paper emphasis on the reduction of large number of irrelevant association rules obtained providing a better platform of future prediction using fuzzy membership functions and fuzzy rules for time series data. Secondly, this paper also measures the data dispersion in time series data mainly in stock market data and shows the deviation of the stock prices from the mean of several stock price data points taken over a period of time which help the investors to decide whether to buy or sell their products. Risk investment can be predicted understanding the obtained curve in the experiment. Experiments are also carried out to show the results of the proposed algorithm.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fuzzy data mining for time-series data
    Chen, Chun-Hao
    Hong, Tzung-Pei
    Tseng, Vincent S.
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 536 - 542
  • [2] Research on event prediction in time-series data
    Yan, XB
    Lu, T
    Li, YJ
    Cui, GB
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2874 - 2878
  • [3] Analyzing time-series data by fuzzy data-mining technique
    Chen, CH
    Hong, TP
    Tseng, VS
    2005 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2005, : 112 - 117
  • [4] On Some Fuzzy Clustering Algorithms for Time-Series Data
    Fujita, Mizuki
    Kanzawa, Yuchi
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING (IUKM 2022), 2022, 13199 : 169 - 181
  • [5] Time-series data prediction problem analysis through multilayered intuitionistic fuzzy sets
    Dwivedi, Atul Kumar
    Subramanian, Umadevi Kaliyaperumal
    Kuruvilla, Jinsa
    Thomas, Aby
    Shanthi, D.
    Haldorai, Anandakumar
    SOFT COMPUTING, 2023, 27 (03) : 1663 - 1671
  • [6] A Fuzzy Time-Series Prediction Model with Multi-Biological Data for Health Management
    Tanii, Hideaki
    Kuramoto, Kei
    Nakajima, Hiroshi
    Kobashi, Syoji
    Tsuchiya, Naoki
    Hata, Yutaka
    6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS, AND THE 13TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS, 2012, : 1259 - 1264
  • [7] Nonlinear time-series prediction with missing and noisy data
    Tresp, V
    Hofmann, R
    NEURAL COMPUTATION, 1998, 10 (03) : 731 - 747
  • [8] PREDICTION AND CONTROL FOR A TIME-SERIES COUNT DATA MODEL
    BRANNAS, K
    INTERNATIONAL JOURNAL OF FORECASTING, 1995, 11 (02) : 263 - 270
  • [9] Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks
    Maraziotis, I. A.
    Dragomir, A.
    Bezerianos, A.
    IET SYSTEMS BIOLOGY, 2007, 1 (01) : 41 - 50
  • [10] Evaluating Impact Using Time-Series Data
    Wauchope, Hannah S.
    Amano, Tatsuya
    Geldmann, Jonas
    Johnston, Alison
    Simmons, Benno, I
    Sutherland, William J.
    Jones, Julia P. G.
    TRENDS IN ECOLOGY & EVOLUTION, 2021, 36 (03) : 196 - 205