Time-Series Data Prediction Using Fuzzy Data Dredging

被引:0
|
作者
Jain, Vinesh [1 ]
Rathi, Rakesh [1 ]
Gautam, Anshuman Kr [1 ]
机构
[1] Govt Engn Coll Ajmer, Dept Comp Engg, Ajmer, Rajasthan, India
关键词
Association rule; Data dredging; Fuzzy set; Standard deviation; Stock market; Time series;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As information technology (I.T.) is progressing rapidly day by day a massive amount of data is emerging at a fast rate in different sectors. Data dredging provides techniques to have relevant data from a large amount of data for the task. This paper introduces an algorithm for fuzzy data dredging through which fuzzy association rules can be generated for time series data. Time series data can be stock market data, climatic observed data or any sequence data which has some trend or pattern in it. In the past many approaches based on mathematical models were suggested for dredging association rules but they were quite complex for the users. This paper emphasis on the reduction of large number of irrelevant association rules obtained providing a better platform of future prediction using fuzzy membership functions and fuzzy rules for time series data. Secondly, this paper also measures the data dispersion in time series data mainly in stock market data and shows the deviation of the stock prices from the mean of several stock price data points taken over a period of time which help the investors to decide whether to buy or sell their products. Risk investment can be predicted understanding the obtained curve in the experiment. Experiments are also carried out to show the results of the proposed algorithm.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] AN ANALYSIS OF FRINGE BENEFITS USING TIME-SERIES DATA
    ALPERT, WT
    APPLIED ECONOMICS, 1987, 19 (01) : 1 - 16
  • [22] Using Time-Series Databases for Energy Data Infrastructures
    Hadjichristofi, Christos
    Diochnos, Spyridon
    Andresakis, Kyriakos
    Vescoukis, Vassilios
    ENERGIES, 2024, 17 (21)
  • [23] Using signature files for querying time-series data
    Andre-Jonsson, H
    Badal, DZ
    PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1997, 1263 : 211 - 220
  • [24] Analysis of Time-Series Data Using the Rough Set
    Matsumoto, Yoshiyuki
    Watada, Junzo
    INNOVATION IN MEDICINE AND HEALTHCARE 2015, 2016, 45 : 139 - 148
  • [25] Using Property Graphs to Segment Time-Series Data
    Karetnikov, Aleksei
    Rehberger, Tobias
    Lettner, Christian
    Himmelbauer, Johannes
    Nikzad-Langerodi, Ramin
    Gsellmann, Guenter
    Nestelberger, Susanne
    Schutzeneder, Stefan
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022 WORKSHOPS, 2022, 1633 : 416 - 423
  • [26] Fuzzy Hidden Markov Chain Based Models for Time-Series Data
    Tao, Yihui
    Mahfouf, Mahdi
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 13 - 23
  • [27] Time-series prediction using adaptive neuro-fuzzy networks
    Lin, CJ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2004, 35 (05) : 273 - 286
  • [28] Non-stationary time-series prediction using fuzzy clustering
    Geva, AB
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 413 - 417
  • [29] Reduction of noise in induced polarization data using full time-series data
    Paine, John
    Copeland, Alex
    EXPLORATION GEOPHYSICS, 2003, 34 (04) : 225 - 228
  • [30] A method of compositional data time series prediction integrating fuzzy time series analysis
    Tao Z.
    Tan W.
    Chen H.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2023, 43 (05): : 1534 - 1544