The sum of squares of degrees of bipartite graphs

被引:0
|
作者
M. G. Neubauer
机构
[1] California State University,Department of Mathematics
[2] Northridge,undefined
来源
Acta Mathematica Hungarica | 2023年 / 171卷
关键词
bipartite graph; sum of squares of degree sequences; primary 05C07; 05C35; 05C75; secondary 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a subgraph of the complete bipartite graph Kl,m,l≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{l,m},{l \leq m}$$\end{document}, with e=qm+p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e=qm+p>0$$\end{document}, 0≤p<m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leq p <m$$\end{document}, edges. The maximal value of the sum of the squares of the degrees of the vertices of G is qm2+p2+p(q+1)2+(m-p)q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qm^2+p^2+ p (q+1)^2+(m-p) q^2$$\end{document}. We classify all graphs that attain this bound using the diagonal sequence of a partition.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [1] The sum of squares of degrees of bipartite graphs
    Neubauer, M. G.
    ACTA MATHEMATICA HUNGARICA, 2023, 171 (1) : 1 - 11
  • [2] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Zhang, Sheng-gui
    Zhou, Chun-cao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 801 - 806
  • [3] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Sheng-gui ZHANG
    Chun-cao ZHOU
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 801 - 806
  • [4] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Shenggui ZHANG
    Chuncao ZHOU
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (03) : 801 - 806
  • [5] Bipartite graphs with the maximum sum of squares of degrees
    Sheng-gui Zhang
    Chun-cao Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 801 - 806
  • [6] Extreme values of the sum of squares of degrees of bipartite graphs
    Cheng, T. C. Edwin
    Guo, Yonglin
    Zhang, Shenggui
    Du, Yongjun
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1557 - 1564
  • [7] On the sum of the squares of all distances in bipartite graphs
    Zhao, Hongjin
    Geng, Xianya
    ARS COMBINATORIA, 2018, 136 : 45 - 55
  • [8] On the sum of the squares of all distances in bipartite graphs with given connectivity
    Geng, Xianya
    Zhao, Hongjin
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 206 - 212
  • [9] (n,e)-graphs with maximum sum of squares of degrees
    Peled, UN
    Petreschi, R
    Sterbini, A
    JOURNAL OF GRAPH THEORY, 1999, 31 (04) : 283 - 295
  • [10] Bipartite dimensions and bipartite degrees of graphs
    Fishburn, PC
    Hammer, PL
    DISCRETE MATHEMATICS, 1996, 160 (1-3) : 127 - 148