Sorting by Swaps with Noisy Comparisons

被引:0
|
作者
Tomáš Gavenčiak
Barbara Geissmann
Johannes Lengler
机构
[1] Charles University,Department of Applied Mathematics
[2] CTU,Department of Computer Science, FEE
[3] ETH Zurich,Department of Computer Science
来源
Algorithmica | 2019年 / 81卷
关键词
Sorting; Random swaps; Evolutionary algorithms; Comparison-based; Noise; Optimization heuristics;
D O I
暂无
中图分类号
学科分类号
摘要
We study sorting of permutations by random swaps if each comparison gives the wrong result with some fixed probability p<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1/2$$\end{document}. We use this process as prototype for the behaviour of randomized, comparison-based optimization heuristics in the presence of noisy comparisons. As quality measure, we compute the expected fitness of the stationary distribution. To measure the runtime, we compute the minimal number of steps after which the average fitness approximates the expected fitness of the stationary distribution. We study the process where in each round a random pair of elements at distance at most r are compared. We give theoretical results for the extreme cases r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document} and r=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=n$$\end{document}, and experimental results for the intermediate cases. We find a trade-off between faster convergence (for large r) and better quality of the solution after convergence (for small r).
引用
收藏
页码:796 / 827
页数:31
相关论文
共 50 条
  • [41] Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons
    Wu, Yue
    Jin, Tao
    Lou, Hao
    Xu, Pan
    Farnoud, Farzad
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [42] Sorting apples from oranges in single-cell expression comparisons
    Hamey, Fiona K.
    Gottgens, Berthold
    NATURE METHODS, 2018, 15 (05) : 321 - +
  • [43] Sorting apples from oranges in single-cell expression comparisons
    Fiona K Hamey
    Berthold Göttgens
    Nature Methods, 2018, 15 : 321 - 322
  • [44] Risky social choice with incomplete or noisy interpersonal comparisons of well-being
    Marcus Pivato
    Social Choice and Welfare, 2013, 40 : 123 - 139
  • [45] CLITORIAL SWAPS VERSUS UTERINE SWAPS IN THE MARE GYNECOLOGY
    WOCKENER, A
    MERKT, H
    HEILKENBRINKER, T
    BISPING, W
    ZUCHTHYGIENE-REPRODUCTION IN DOMESTIC ANIMALS, 1987, 22 (03): : 139 - 139
  • [46] On Sample Complexity Upper and Lower Bounds for Exact Ranking from Noisy Comparisons
    Ren, Wenbo
    Liu, Jia
    Shroff, Ness B.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [47] Feature analysis, evaluation and comparisons of classification algorithms based on noisy intrusion dataset
    Hussain, Jamal
    Lalmuanawma, Samuel
    2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, COMMUNICATION & CONVERGENCE, ICCC 2016, 2016, 92 : 188 - 198
  • [49] Active Learning for Top-K Rank Aggregation from Noisy Comparisons
    Mohajer, Soheil
    Suh, Changho
    Elmandy, Adel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [50] Moment swaps
    Schoutens, W
    QUANTITATIVE FINANCE, 2005, 5 (06) : 525 - 530