Sorting by Swaps with Noisy Comparisons

被引:0
|
作者
Tomáš Gavenčiak
Barbara Geissmann
Johannes Lengler
机构
[1] Charles University,Department of Applied Mathematics
[2] CTU,Department of Computer Science, FEE
[3] ETH Zurich,Department of Computer Science
来源
Algorithmica | 2019年 / 81卷
关键词
Sorting; Random swaps; Evolutionary algorithms; Comparison-based; Noise; Optimization heuristics;
D O I
暂无
中图分类号
学科分类号
摘要
We study sorting of permutations by random swaps if each comparison gives the wrong result with some fixed probability p<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1/2$$\end{document}. We use this process as prototype for the behaviour of randomized, comparison-based optimization heuristics in the presence of noisy comparisons. As quality measure, we compute the expected fitness of the stationary distribution. To measure the runtime, we compute the minimal number of steps after which the average fitness approximates the expected fitness of the stationary distribution. We study the process where in each round a random pair of elements at distance at most r are compared. We give theoretical results for the extreme cases r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document} and r=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=n$$\end{document}, and experimental results for the intermediate cases. We find a trade-off between faster convergence (for large r) and better quality of the solution after convergence (for small r).
引用
收藏
页码:796 / 827
页数:31
相关论文
共 50 条
  • [21] Sorting and Selection in Rounds with Adversarial Comparisons
    Trevisan, Christopher
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 1099 - 1119
  • [22] Top-k and Clustering with Noisy Comparisons
    Davidson, Susan
    Khanna, Sanjeev
    Milo, Tova
    Roy, Sudeepa
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2014, 39 (04):
  • [23] Pairwise learning for personalized ranking with noisy comparisons
    Liu, Bin
    Wang, Bang
    INFORMATION SCIENCES, 2023, 623 : 242 - 257
  • [24] Maximum Selection and Ranking under Noisy Comparisons
    Falahatgar, Moein
    Orlitsky, Alon
    Pichapati, Venkatadheeraj
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [25] Parallel Algorithms for Select and Partition with Noisy Comparisons
    Braverman, Mark
    Mao, Jieming
    Weinberg, S. Matthew
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 851 - 862
  • [26] NOISY SORT, A MEMORY-INTENSIVE SORTING ALGORITHM
    HORIGUCHI, S
    MIRANKER, WL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 : 641 - 658
  • [27] Sorting the Signals from the Signals in the Noisy Environment of Inflammation
    Muller, William A.
    SCIENCE SIGNALING, 2011, 4 (170)
  • [28] SOME ESTIMATES OF NUMBER OF COMPARISONS IN SORTING PROBLEMS
    GLOTOV, VA
    AUTOMATION AND REMOTE CONTROL, 1975, 36 (11) : 1863 - 1866
  • [29] Sorting 13 elements requires 34 comparisons
    Peczarski, M
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 785 - 794
  • [30] Comparisons in evolution and engineering: The collective intelligence of sorting
    Scholes, S
    Wilson, M
    Sendova-Franks, AB
    Melhuish, C
    ADAPTIVE BEHAVIOR, 2004, 12 (3-4) : 147 - 159