In the present paper, the potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are investigated, which can be used to describe many mathematical and physical backgrounds, e.g., fluid dynamics and communications. Based on Hirota bilinear method, the bilinear equation for the (3+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$3+1$\end{document})-dimensional potential-YTSF equation is obtained by applying an appropriate dependent variable transformation. Then N-soliton solutions of nonlinear evolution equation are derived by the perturbation technique, and the periodic wave solutions for potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are constructed by employing the Riemann theta function. Furthermore, the asymptotic properties of periodic wave solutions show that soliton solutions can be derived from periodic wave solutions.
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
Zhang, Li
Lin, Yezhi
论文数: 0引用数: 0
h-index: 0
机构:
Wenzhou Med Univ, Dept Comp & Informat, Wenzhou 325035, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
Lin, Yezhi
Liu, Yinping
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China