Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics

被引:0
|
作者
Rui Cao
Qiulan Zhao
Lin Gao
机构
[1] Heze University,College of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
[3] Heze University,College Library
关键词
Potential Kadomtsev–Petviashvili equation; (3 + 1)-dimensional potential-YTSF equation; N-soliton solution; Periodic wave solution; Hirota method;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are investigated, which can be used to describe many mathematical and physical backgrounds, e.g., fluid dynamics and communications. Based on Hirota bilinear method, the bilinear equation for the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation is obtained by applying an appropriate dependent variable transformation. Then N-soliton solutions of nonlinear evolution equation are derived by the perturbation technique, and the periodic wave solutions for potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are constructed by employing the Riemann theta function. Furthermore, the asymptotic properties of periodic wave solutions show that soliton solutions can be derived from periodic wave solutions.
引用
收藏
相关论文
共 50 条
  • [31] Functional Separable Solutions of Two Classes of Nonlinear Mathematical Physics Equations
    Polyanin, A. D.
    Zhurov, A. I.
    DOKLADY MATHEMATICS, 2019, 99 (03) : 321 - 324
  • [32] Functional Separable Solutions of Two Classes of Nonlinear Mathematical Physics Equations
    A. D. Polyanin
    A. I. Zhurov
    Doklady Mathematics, 2019, 99 : 321 - 324
  • [33] Soliton solutions of a few nonlinear wave equations
    Jawad, Anwar Ja'afar Mohamad
    Petkovic, Marko D.
    Biswas, Anjan
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (09) : 2649 - 2658
  • [34] Periodic solutions of nonlinear wave equations
    Bourgain, J
    HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS: ESSAYS IN HONOR OF ALBERTO P CALDERON, 1999, : 69 - 97
  • [35] SPECTRAL APPROACH FOR THE SOLITON AND PERIODIC-SOLUTIONS OF THE NONLINEAR-WAVE EQUATION
    KUMAR, S
    ANAND, GV
    SELVARAJAN, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (04) : 697 - 703
  • [36] Periodic solutions for nonlinear evolution equations
    Chen, YQ
    Cho, YJ
    Yang, L
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (04): : 581 - 598
  • [37] Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (04)
  • [38] Construction of periodic and solitary wave solutions for the complex nonlinear evolution equations
    Cevikel, Adem C.
    Bekir, Ahmet
    San, Sait
    Gucen, Mustafa B.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (02): : 694 - 700
  • [39] PERIODIC TRAVELING-WAVE SOLUTIONS OF NONLINEAR DISPERSIVE EVOLUTION EQUATIONS
    Chen, Hongqiu
    Bona, Jerry L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (11-12) : 4841 - 4873
  • [40] Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics
    Mustafa Inc
    Abdullahi Yusuf
    Aliyu Isa Aliyu
    Dumitru Baleanu
    Optical and Quantum Electronics, 2018, 50