LQP method with a new optimal step size rule for nonlinear complementarity problems

被引:0
|
作者
Ali Ou-yassine
Abdellah Bnouhachem
Fatimazahra Benssi
机构
[1] Ibn Zohr University,Laboratoire d’Ingénierie des Systémes et Technologies de l’Information, ENSA
[2] Nanjing University,School of Management Science and Engineering
关键词
nonlinear complementarity problems; co-coercive operator; logarithmic-quadratic proximal method;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired and motivated by results of Bnouhachem et al. (Hacet. J. Math. Stat. 41(1):103-117, 2012), we propose a new modified LQP method by using a new optimal step size, where the underlying function F is co-coercive. Under some mild conditions, we show that the method is globally convergent. Some preliminary computational results are given to illustrate the efficiency of the proposed method.
引用
收藏
相关论文
共 50 条
  • [31] An Iterative Method for Generalized Nonlinear Complementarity Problems
    Habetler, G. J.
    Price, A. L.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1973, 11 (01) : 36 - 48
  • [32] A new SQP approach for nonlinear complementarity problems
    Lai, Ming-Yong
    Nie, Pu-Yan
    Zhang, Pei-Ai
    Zhu, Shu-Jin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1222 - 1230
  • [33] New reformulations for stochastic nonlinear complementarity problems
    Lin, Gui-Hua
    Fukushima, Masao
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (04): : 551 - 564
  • [34] A New Smoothing Conjugate Gradient Method for Solving Nonlinear Nonsmooth Complementarity Problems
    Chu, Ajie
    Du, Shouqiang
    Su, Yixiao
    ALGORITHMS, 2015, 8 (04): : 1195 - 1209
  • [35] A NEW SMOOTHING NONMONOTONE TRUST REGION METHOD FOR SOLVING NONLINEAR COMPLEMENTARITY PROBLEMS
    Ji, Ying
    Wang, Tienan
    Li, Yijun
    Zhou, Yong
    ADVANCES AND APPLICATIONS IN STATISTICS, 2014, 40 (01) : 31 - 60
  • [36] A Homotopy Interior point Method for Nonlinear Complementarity Problems
    $$$$Wang Yu(Inst
    数学研究与评论, 1995, (03) : 410 - 410
  • [37] A proximal method with logarithmic barrier for nonlinear complementarity problems
    Otero, Rolando Garciga
    Iusem, Alfredo
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (04) : 663 - 678
  • [38] A smoothing inexact Newton method for nonlinear complementarity problems
    Rui, Shao-Ping
    Xu, Cheng-Xian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2332 - 2338
  • [39] A regularization Newton method for solving nonlinear complementarity problems
    Sun, D
    APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 40 (03): : 315 - 339