LQP method with a new optimal step size rule for nonlinear complementarity problems

被引:0
|
作者
Ali Ou-yassine
Abdellah Bnouhachem
Fatimazahra Benssi
机构
[1] Ibn Zohr University,Laboratoire d’Ingénierie des Systémes et Technologies de l’Information, ENSA
[2] Nanjing University,School of Management Science and Engineering
关键词
nonlinear complementarity problems; co-coercive operator; logarithmic-quadratic proximal method;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired and motivated by results of Bnouhachem et al. (Hacet. J. Math. Stat. 41(1):103-117, 2012), we propose a new modified LQP method by using a new optimal step size, where the underlying function F is co-coercive. Under some mild conditions, we show that the method is globally convergent. Some preliminary computational results are given to illustrate the efficiency of the proposed method.
引用
收藏
相关论文
共 50 条
  • [21] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Buhmiler, Sandra
    Krejic, Natasa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (02) : 141 - 155
  • [22] Optimal power flow by a nonlinear complementarity method
    Torres, GL
    Quintana, VH
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON POWER INDUSTRY COMPUTER APPLICATIONS, 1999, : 211 - 216
  • [23] Optimal power flow by a nonlinear complementarity method
    Torres, Geraldo Leite
    Quintana, Victor Hugo
    IEEE Power Industry Computer Applications Conference, 1999, : 211 - 216
  • [24] Optimal power flow by a nonlinear complementarity method
    Torres, GL
    Quintana, VH
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (03) : 1028 - 1033
  • [25] On a nonsmooth Newton method for nonlinear complementarity problems in function space with applications to optimal control
    Ulbrich, M
    COMPLEMENTARITY: APPLICATIONS, ALGORITHMS AND EXTENSIONS, 2001, 50 : 341 - 360
  • [26] A SQP METHOD FOR GENERAL NONLINEAR COMPLEMENTARITY PROBLEMS
    Xiu Naihua.Dept.of Appl.Math.
    AppliedMathematics:AJournalofChineseUniversities, 2000, (04) : 433 - 442
  • [27] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [28] A filter method for solving nonlinear complementarity problems
    Nie, PY
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) : 677 - 694
  • [29] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [30] A SQP method for general nonlinear complementarity problems
    Naihua X.
    Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) : 433 - 442