LQP method with a new optimal step size rule for nonlinear complementarity problems

被引:0
|
作者
Ali Ou-yassine
Abdellah Bnouhachem
Fatimazahra Benssi
机构
[1] Ibn Zohr University,Laboratoire d’Ingénierie des Systémes et Technologies de l’Information, ENSA
[2] Nanjing University,School of Management Science and Engineering
关键词
nonlinear complementarity problems; co-coercive operator; logarithmic-quadratic proximal method;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired and motivated by results of Bnouhachem et al. (Hacet. J. Math. Stat. 41(1):103-117, 2012), we propose a new modified LQP method by using a new optimal step size, where the underlying function F is co-coercive. Under some mild conditions, we show that the method is globally convergent. Some preliminary computational results are given to illustrate the efficiency of the proposed method.
引用
收藏
相关论文
共 50 条
  • [1] LQP method with a new optimal step size rule for nonlinear complementarity problems
    Ou-yassine, Ali
    Bnouhachem, Abdellah
    Benssi, Fatimazahra
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [2] An improvement lqp method for nonlinear complementarity problems
    Bnouhachem A.
    Qin X.
    Applied Set-Valued Analysis and Optimization, 2020, 2 (01): : 95 - 107
  • [3] Extended LQP Method for Monotone Nonlinear Complementarity Problems
    A. Bnouhachem
    X. M. Yuan
    Journal of Optimization Theory and Applications, 2007, 135 : 343 - 353
  • [4] Extended LQP method for monotone nonlinear complementarity problems
    Bnouhachem, A.
    Yuan, X. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 135 (03) : 343 - 353
  • [5] An improved LQP-based method for solving nonlinear complementarity problems
    Min Li
    Xiao-Ming Yuan
    Frontiers of Mathematics in China, 2010, 5 : 23 - 35
  • [6] An improved LQP-based method for solving nonlinear complementarity problems
    Li, Min
    Yuan, Xiao-Ming
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (01) : 23 - 35
  • [7] A LQP based interior prediction-correction method for nonlinear complementarity problems
    He, BS
    Liao, LZ
    Yuan, XM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (01) : 33 - 44
  • [8] A New Homotopy Method for Nonlinear Complementarity Problems
    Jundi Ding and Hongyou Yin (Department of Mathematics
    Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (02) : 155 - 163
  • [9] A new hybrid method for nonlinear complementarity problems
    Shao-Jian Qu
    Mark Goh
    Xiujie Zhang
    Computational Optimization and Applications, 2011, 49 : 493 - 520
  • [10] A new hybrid method for nonlinear complementarity problems
    Qu, Shao-Jian
    Goh, Mark
    Zhang, Xiujie
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (03) : 493 - 520