The heat semigroups and uncertainty principles related to canonical Fourier-Bessel transform

被引:1
|
作者
Ghazouani, Sami [1 ]
Sahbani, Jihed [2 ,3 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Jarzouna 7021, Bizerte, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Jarzouna 7021, Bizerte, Tunisia
[3] Univ Jendouba, ISLAIB Beja 9000, Beja, Tunisia
关键词
Fourier-Bessel transform; Linear canonical transform; Canonical Fourier-Bessel transform; Translation operator; Convolution product; Heat equation; Heat semigroups; Uncertainty principles;
D O I
10.1007/s11868-024-00608-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce the heat semigroups S nu m-1(t)t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\mathcal {S}}_{\nu }<^>{{\textbf{m}}<^>{-1}}(t)\right) _{t\ge 0}$$\end{document} related to Delta nu m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}$$\end{document} given by Delta nu m-1=d2dx2+2 nu+1x+2iabxddx-a2b2x2-2i nu+1ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}=\frac{d<^>{2}}{dx<^>{2}}+\left( \frac{2\nu +1}{x}+2i\frac{a}{b} x\right) \frac{d}{dx}-\left( \frac{a<^>{2}}{b<^>{2}}x<^>{2}-2i\left( \nu +1\right) \frac{a}{b}\right) \end{aligned}$$\end{document}and we study some of its important properties. In the present paper, several uncertainty principles for the canonical Fourier-Bessel transform are given, including the Beurling, Gelfand-Shilov and Cowling-Price uncertainty principles.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Boas Type and Titchmarsh Type Theorems for Generalized Fourier-Bessel Transform
    Volosivets S.
    Journal of Mathematical Sciences, 2023, 271 (2) : 115 - 125
  • [42] Fourier-Bessel Series Modeling of Dielectrophoretic Bionanoparticle Transport: Principles and Applications
    Bakewell, David J.
    Chichenkov, Aleksandr
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2012, 11 (01) : 79 - 86
  • [43] Uncertainty Principles for Linear Canonical Transform
    Zhao, Juan
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2856 - 2858
  • [44] Uncertainty principles for linear canonical transform
    Mai, Weixiong
    Dang, Pei
    Pan, Wenliang
    Chen, Xuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (02)
  • [45] Unfolding the Topological Charge of a Complex Field through its Fourier-Bessel Transform
    Bahl, Monika
    Senthilkumaran, P.
    2013 Workshop on Recent Advances in Photonics (WRAP), 2013,
  • [46] On estimates for the Fourier-Bessel integral transform in the space L 2(a"e+)
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (07) : 1103 - 1110
  • [47] Spaces of distributions of Besov and Triebel-Lizorkin type for the Fourier-Bessel transform
    Cruz-Báez, DI
    Rodríguez, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 259 (01) : 51 - 63
  • [48] Uncertainty Principles for the Clifford–Fourier Transform
    Jamel El Kamel
    Rim Jday
    Advances in Applied Clifford Algebras, 2017, 27 : 2429 - 2443
  • [49] The general Fourier-bessel transform and singular systems of Navier-Stokes equations
    Lyakhov, LN
    Lyakhova, SL
    DOKLADY MATHEMATICS, 2004, 70 (03) : 866 - 869
  • [50] Moduli of smoothness and generalized canonical Fourier-Bessel diffrential operator on the half-line
    El Mfadel, Ali
    Elomari, M'hamed
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (02)