The heat semigroups and uncertainty principles related to canonical Fourier-Bessel transform

被引:1
|
作者
Ghazouani, Sami [1 ]
Sahbani, Jihed [2 ,3 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Jarzouna 7021, Bizerte, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Jarzouna 7021, Bizerte, Tunisia
[3] Univ Jendouba, ISLAIB Beja 9000, Beja, Tunisia
关键词
Fourier-Bessel transform; Linear canonical transform; Canonical Fourier-Bessel transform; Translation operator; Convolution product; Heat equation; Heat semigroups; Uncertainty principles;
D O I
10.1007/s11868-024-00608-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce the heat semigroups S nu m-1(t)t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\mathcal {S}}_{\nu }<^>{{\textbf{m}}<^>{-1}}(t)\right) _{t\ge 0}$$\end{document} related to Delta nu m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}$$\end{document} given by Delta nu m-1=d2dx2+2 nu+1x+2iabxddx-a2b2x2-2i nu+1ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _{\nu }<^>{{\textbf{m}}<^>{-1}}=\frac{d<^>{2}}{dx<^>{2}}+\left( \frac{2\nu +1}{x}+2i\frac{a}{b} x\right) \frac{d}{dx}-\left( \frac{a<^>{2}}{b<^>{2}}x<^>{2}-2i\left( \nu +1\right) \frac{a}{b}\right) \end{aligned}$$\end{document}and we study some of its important properties. In the present paper, several uncertainty principles for the canonical Fourier-Bessel transform are given, including the Beurling, Gelfand-Shilov and Cowling-Price uncertainty principles.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] THE LITTLEWOOD-PALEY THEORY FOR THE FOURIER-BESSEL TRANSFORM
    STEMPAK, K
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (01): : 15 - 18
  • [22] The Fourier-Bessel transform in the theory of singular differential equations
    Kulikov, AA
    Kipriyanov, IA
    DIFFERENTIAL EQUATIONS, 1999, 35 (03) : 341 - 351
  • [23] Some new estimates of the Fourier-Bessel transform in the space
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (10) : 1440 - 1446
  • [24] A variation on uncertainty principles for the generalized q-Bessel Fourier transform
    Hleili, Manel
    Nefzi, Bochra
    Bsaissa, Anis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 823 - 832
  • [25] The solutions of then-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution
    Hüseyin Yildirim
    M. Zeki Sarikaya
    Sermin öztürk
    Proceedings Mathematical Sciences, 2004, 114 : 375 - 387
  • [26] The solutions of the it-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution
    Yildirim, H
    Sarikaya, MZ
    Öztürk, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (04): : 375 - 387
  • [27] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on ℂn
    Der-Chen Chang
    Peter Griener
    Jingzhi Tie
    Science in China Series A: Mathematics, 2006, 49 : 1722 - 1739
  • [28] An Analog of Titchmarsh's Theorem for the Generalized Fourier-Bessel Transform
    Daher, R.
    El Hamma, M.
    El Ouadih, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 114 - 119
  • [29] NUMERICAL INVERSION OF THE LAPLACE TRANSFORM BASED ON THE FOURIER-BESSEL EXPANSION
    SELEZOV, IT
    KORSUNSKII, SV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (11): : 24 - 30
  • [30] Full Fourier-Bessel transform and the algebra of singular pseudodifferential operators
    Katrakhov, V. V.
    Lyakhov, L. N.
    DIFFERENTIAL EQUATIONS, 2011, 47 (05) : 681 - 695