A new construction of quantum codes from quasi-cyclic codes over finite fields

被引:0
|
作者
Soumak Biswas
Maheshanand Bhaintwal
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
关键词
Quasi-cyclic codes; Quantum codes; Cyclotomic coset; Defining set; 94B05; 94B15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a construction of quantum codes from 1-generator quasi-cyclic (QC) codes of index 2 over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. We have studied QC codes of index 2 as a special case of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}-double cyclic codes. We have determined the structure of the duals of such QC codes and presented a necessary and sufficient condition for them to be self-orthogonal. A construction of 1-generator QC codes with good minimum distance is also presented. To obtain quantum codes from QC codes, we use the Calderbank-Shor-Steane (CSS) construction. Few examples have been given to demonstrate this construction. Also, we present two tables of quantum codes with good parameters obtained from QC codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 50 条
  • [41] Quantum synchronizable codes from repeated-root quasi-cyclic codes
    Du, Chao
    Ma, Zhi
    Liu, Yiting
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [42] A Unified Approach to the Construction of Binary and Nonbinary Quasi-Cyclic LDPC Codes Based on Finite Fields
    Song, Shumei
    Zbou, Bo
    Lin, Shu
    Abdel-Ghaffar, Khaled
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (01) : 84 - 93
  • [43] Quantum synchronizable codes from repeated-root quasi-cyclic codes
    Chao Du
    Zhi Ma
    Yiting Liu
    Computational and Applied Mathematics, 2023, 42
  • [44] NEW CONSTRUCTION OF MAJORITY LOGIC DECODABLE QUASI-CYCLIC CODES
    ZHI, C
    FAN, J
    HONGMING, H
    ELECTRONICS LETTERS, 1992, 28 (13) : 1198 - 1200
  • [45] On quasi-cyclic codes
    Heijnen, P
    van Tilborg, H
    Weijs, S
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 65 - 65
  • [46] Layered Construction of Quasi-Cyclic LDPC Codes
    Tao, Xiongfei
    Xin, Yue
    Wang, Bifang
    Chang, Li
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (05) : 946 - 950
  • [47] Quasi-Cyclic LDPC Codes: An Algebraic Construction
    Kang, Jingyu
    Huang, Qin
    Zhang, Li
    Zhou, Bo
    Lin, Shu
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (05) : 1383 - 1396
  • [48] A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields
    Jian Gao
    Linzhi Shen
    Fang-Wei Fu
    Cryptography and Communications, 2016, 8 : 51 - 66
  • [49] A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields
    Gao, Jian
    Shen, Linzhi
    Fu, Fang-Wei
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (01): : 51 - 66
  • [50] A sequence construction of cyclic codes over finite fields
    Ding, Cunsheng
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (02): : 319 - 341