A new construction of quantum codes from quasi-cyclic codes over finite fields

被引:0
|
作者
Soumak Biswas
Maheshanand Bhaintwal
机构
[1] Indian Institute of Technology Roorkee,Department of Mathematics
关键词
Quasi-cyclic codes; Quantum codes; Cyclotomic coset; Defining set; 94B05; 94B15; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a construction of quantum codes from 1-generator quasi-cyclic (QC) codes of index 2 over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. We have studied QC codes of index 2 as a special case of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}-double cyclic codes. We have determined the structure of the duals of such QC codes and presented a necessary and sufficient condition for them to be self-orthogonal. A construction of 1-generator QC codes with good minimum distance is also presented. To obtain quantum codes from QC codes, we use the Calderbank-Shor-Steane (CSS) construction. Few examples have been given to demonstrate this construction. Also, we present two tables of quantum codes with good parameters obtained from QC codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 50 条
  • [31] Quasi-cyclic codes of index 2 and skew polynomial rings over finite fields
    Cao, Yonglin
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 143 - 158
  • [32] On quasi-cyclic codes over Zq
    Bhaintwal, Maheshanand
    Wasan, Siri Krishan
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (5-6) : 459 - 480
  • [33] Bounds on quasi-cyclic codes over finite chain rings
    Gao J.
    Shen L.
    Fu F.-W.
    Gao, Jian (jiangao@mail.nankai.edu.cn), 1600, Springer Verlag (50): : 577 - 587
  • [34] Quasi-cyclic codes from a finite affine plane
    Kamiya, N
    Fossorier, MPC
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (03) : 311 - 329
  • [35] Quasi-cyclic codes from a finite affine plane
    Kamiya, N
    Fossorier, MPC
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 57 - 57
  • [36] Quasi-Cyclic Codes from a Finite Affine Plane
    Norifumi Kamiya
    Marc P. C. Fossorier
    Designs, Codes and Cryptography, 2006, 38 : 311 - 329
  • [37] Quasi-cyclic codes as cyclic codes over a family of local rings
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 40 : 138 - 149
  • [38] New Binary Quantum Codes Derived From One-Generator Quasi-Cyclic Codes
    Lv, Jingjie
    Li, Ruihu
    Wang, Junli
    IEEE ACCESS, 2019, 7 : 85782 - 85785
  • [39] Quasi-cyclic codes with cyclic constituent codes
    Lim, Chong Jie
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 516 - 534
  • [40] On quasi-cyclic codes as a generalization of cyclic codes
    Barbier, M.
    Chabot, C.
    Quintin, G.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (05) : 904 - 919