High Temperature B2 Precipitation in Ru-Containing Refractory Multi-principal Element Alloys

被引:0
|
作者
Carolina Frey
Haojun You
Sebastian Kube
Glenn H. Balbus
Kaitlyn Mullin
Scott Oppenheimer
Collin S. Holgate
Tresa M. Pollock
机构
[1] University of California,Materials Department
[2] Air Force Research Laboratory,undefined
[3] Materials and Manufacturing Directorate,undefined
[4] General Electric Global Research Center,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Ru-based B2 phases present an opportunity to design two-phase BCC + B2 refractory multi-principal element alloys (RMPEAs) with higher temperature stability compared to B2 phases observed in RMPEAs. In this investigation, seven equiatomic Ru-containing RMPEAs were characterized in the as-cast and annealed conditions. Of the two Hf-free alloys, Mo25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Nb25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Ta25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Ru25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document} was determined to be a single-phase B2 alloy and Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}W20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document} was single-phase BCC. Within all five Hf-containing alloys, phases formed during solidification included HfRu–B2, disordered BCC, and HfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} phases. The Hf-containing alloys also precipitated B2 nanoparticles within the BCC phases after further cooling in the solid. All phases were still present after annealing at 1500 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C to 1600 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C. The HfRu–B2 nanoparticles in as-cast Hf20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document} were characterized by transmission electron microscopy (TEM), and a lattice misfit of < 1 pct between the BCC phase and B2 nanoparticles was calculated. Room-temperature micropillar compression tests were performed on BCC + B2 nanoparticle regions in annealed Hf20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}. Post-mortem TEM analysis revealed precipitate shearing by dislocations, resulting in paired dislocations, along with bowing of dislocations around precipitates. Utilizing the insights from this investigation, compositions for RMPEAs with solutionable B2 precipitates stable above 1200 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C are suggested.
引用
收藏
页码:1739 / 1764
页数:25
相关论文
共 50 条
  • [31] Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys
    Chen, Bing
    Li, Suzhi
    Ding, Jun
    Ding, Xiangdong
    Sun, Jun
    Ma, En
    SCRIPTA MATERIALIA, 2023, 222
  • [32] Refractory multi-principal element alloys MoxNbTiZry: Microstructure, mechanical properties and oxidation resistance
    Tang, Ye
    Xie, Zhixiong
    Yang, Tao
    Peng, Youhang
    Liu, Yushuai
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2025, 130
  • [33] Multi-objective, multi-constraint high-throughput design, synthesis, and characterization of tungsten-containing refractory multi-principal element alloys
    Acemi, Cafer
    Vela, Brent
    Norris, Eli
    Trehern, William
    Atli, Kadri Can
    Cleek, Conner
    Arroyave, Raymundo
    Karaman, Ibrahim
    ACTA MATERIALIA, 2024, 281
  • [34] Formation of single-phased B2 multi-principal element intermetallics: From experiments to modeling
    Zhao, Weijiang
    Wang, Hang
    He, Quanfeng
    Li, Hu
    Wang, Li
    Liu, Bin
    Liu, Yong
    Yang, Yong
    SCRIPTA MATERIALIA, 2025, 256
  • [35] Design of refractory multi-principal-element alloys for high-temperature applications
    Ouyang, Gaoyuan
    Singh, Prashant
    Su, Ranran
    Johnson, Duane D.
    Kramer, Matthew J.
    Perepezko, John H.
    Senkov, Oleg N.
    Miracle, Daniel
    Cui, Jun
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [36] Design of refractory multi-principal-element alloys for high-temperature applications
    Gaoyuan Ouyang
    Prashant Singh
    Ranran Su
    Duane D. Johnson
    Matthew J. Kramer
    John H. Perepezko
    Oleg N. Senkov
    Daniel Miracle
    Jun Cui
    npj Computational Materials, 9
  • [37] Microstructure and properties of CoCrFeN based multi-principal element alloys containing C and Sc
    He, Mengwei
    Eizadjou, Mehdi
    Chen, Hansheng
    Liu, Hongwei
    Chang, Li
    Ringer, Simon P.
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (20) : 9442 - 9453
  • [38] Effective combination of solid solution strengthening and precipitation hardening in NiCrFeWTiAl multi-principal element alloys
    Lin, Mei
    Yang, Zhongsheng
    Shi, Xinbo
    Chen, Yiming
    Lu, Jianlin
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    He, Feng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 933
  • [39] Microstructure, mechanical properties and wear resistance of TiNbCrMo x refractory multi-principal element alloys
    Shi, Shaoqi
    Zou, Yang
    Yang, Zefeng
    Sun, Aihua
    Xu, Gaojie
    Long, Fei
    Li, Zhixiang
    VACUUM, 2024, 225
  • [40] CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr
    Senkov, O. N.
    Zhang, C.
    Pilchak, A. L.
    Payton, E. J.
    Woodward, C.
    Zhang, F.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 783 : 729 - 742