High Temperature B2 Precipitation in Ru-Containing Refractory Multi-principal Element Alloys

被引:0
|
作者
Carolina Frey
Haojun You
Sebastian Kube
Glenn H. Balbus
Kaitlyn Mullin
Scott Oppenheimer
Collin S. Holgate
Tresa M. Pollock
机构
[1] University of California,Materials Department
[2] Air Force Research Laboratory,undefined
[3] Materials and Manufacturing Directorate,undefined
[4] General Electric Global Research Center,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Ru-based B2 phases present an opportunity to design two-phase BCC + B2 refractory multi-principal element alloys (RMPEAs) with higher temperature stability compared to B2 phases observed in RMPEAs. In this investigation, seven equiatomic Ru-containing RMPEAs were characterized in the as-cast and annealed conditions. Of the two Hf-free alloys, Mo25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Nb25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Ta25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document}Ru25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{25}$$\end{document} was determined to be a single-phase B2 alloy and Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}W20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document} was single-phase BCC. Within all five Hf-containing alloys, phases formed during solidification included HfRu–B2, disordered BCC, and HfO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} phases. The Hf-containing alloys also precipitated B2 nanoparticles within the BCC phases after further cooling in the solid. All phases were still present after annealing at 1500 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C to 1600 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C. The HfRu–B2 nanoparticles in as-cast Hf20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document} were characterized by transmission electron microscopy (TEM), and a lattice misfit of < 1 pct between the BCC phase and B2 nanoparticles was calculated. Room-temperature micropillar compression tests were performed on BCC + B2 nanoparticle regions in annealed Hf20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Mo20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Nb20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ta20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}Ru20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{20}$$\end{document}. Post-mortem TEM analysis revealed precipitate shearing by dislocations, resulting in paired dislocations, along with bowing of dislocations around precipitates. Utilizing the insights from this investigation, compositions for RMPEAs with solutionable B2 precipitates stable above 1200 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}C are suggested.
引用
收藏
页码:1739 / 1764
页数:25
相关论文
共 50 条
  • [21] Microstructure and properties of novel quinary multi-principal element alloys with refractory elements
    Guo, Na-na
    Wang, Liang
    Su, Yan-qing
    Luo, Liang-shun
    Li, Xin-zhong
    Guo, Jing-jie
    Fu, Heng-zhi
    CHINA FOUNDRY, 2015, 12 (05) : 319 - 325
  • [22] Ultrahigh-temperature melt printing of multi-principal element alloys
    Xizheng Wang
    Yunhao Zhao
    Gang Chen
    Xinpeng Zhao
    Chuan Liu
    Soumya Sridar
    Luis Fernando Ladinos Pizano
    Shuke Li
    Alexandra H. Brozena
    Miao Guo
    Hanlei Zhang
    Yuankang Wang
    Wei Xiong
    Liangbing Hu
    Nature Communications, 13
  • [23] Ultrahigh-temperature melt printing of multi-principal element alloys
    Wang, Xizheng
    Zhao, Yunhao
    Chen, Gang
    Zhao, Xinpeng
    Liu, Chuan
    Sridar, Soumya
    Pizano, Luis Fernando Ladinos
    Li, Shuke
    Brozena, Alexandra H.
    Guo, Miao
    Zhang, Hanlei
    Wang, Yuankang
    Xiong, Wei
    Hu, Liangbing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [24] Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys
    Tong, Yang
    Zhao, Shijun
    Bei, Hongbin
    Egami, Takeshi
    Zhang, Yanwen
    Zhang, Fuxiang
    ACTA MATERIALIA, 2020, 183 (172-181) : 172 - 181
  • [25] A refractory multi-principal element alloy with superior elevated-temperature strength
    Zhao, Bojun
    Chen, Guoqing
    Lv, Shasha
    Fu, Xuesong
    Zhou, Wenlong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [26] Room temperature dislocation loop dynamics in body-centered cubic refractory multi-principal element alloys
    Mcnutt, Patrick F.
    Jones, Morgan R.
    Garg, Pulkit
    Beyerlein, Irene J.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [27] Atomistic simulations of the local slip resistances in four refractory multi-principal element alloys
    Romero, Rebecca A.
    Xu, Shuozhi
    Jian, Wu-Rong
    Beyerlein, Irene J.
    Ramana, C., V
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 149
  • [28] Line-length-dependent dislocation glide in refractory multi-principal element alloys
    Xu, Shuozhi
    Jian, Wu-Rong
    Su, Yanqing
    Beyerlein, Irene J.
    APPLIED PHYSICS LETTERS, 2022, 120 (06)
  • [29] A refractory multi-principal element alloy with superior elevated-temperature strength
    Zhao, Bojun
    Chen, Guoqing
    Lv, Shasha
    Fu, Xuesong
    Zhou, Wenlong
    Journal of Alloys and Compounds, 2022, 896
  • [30] Achieving ultra hard refractory multi-principal element alloys via mechanical alloying
    Smeltzer, Joshua A.
    Marvel, Christopher J.
    Hornbuckle, B. Chad
    Roberts, Anthony J.
    Marsico, Joseph M.
    Giri, Anit K.
    Darling, Kristopher A.
    Rickman, Jeffrey M.
    Chan, Helen M.
    Harmer, Martin P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 763