Spatiotemporal Exposure Prediction with Penalized Regression

被引:0
|
作者
Nathan A. Ryder
Joshua P. Keller
机构
[1] Colorado State University,Department of Statistics
关键词
Particulate matter; Sulfate; Silicon; Air pollution; Universal kriging; Shrinkage estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Exposure to ambient air pollution is a global health burden, and assessing its relationships to health effects requires predicting concentrations of ambient pollution over time and space. We propose a spatiotemporal penalized regression model that provides high predictive accuracy and greater computation speed than competing approaches. This model uses overfitting and time-smoothing penalties to provide accurate predictions when there are large amounts of temporal missingness in the data. When compared to spatial-only and spatiotemporal universal kriging models in simulations, our model performs similarly under most conditions and can outperform the others when temporal missingness in the data is high. As the number of spatial locations in a data set increases, the computation time of our penalized regression model is more scalable than either of the compared methods. We demonstrate our model using total particulate matter mass (PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document}) and using sulfate and silicon component concentrations. For total mass, our model has lower cross-validated RMSE than the spatial-only universal kriging method, but not the spatiotemporal version. For the component concentrations, which are less frequently observed, our model outperforms both of the other approaches, showing 15% and 13% improvements over the spatiotemporal universal kriging method for sulfate and silicon. The computational speed of our model also allows for the use of nonparametric bootstrap for measurement error correction, a valuable tool in two-stage health effects models. Supplementary materials accompanying this paper appear online.
引用
收藏
页码:260 / 278
页数:18
相关论文
共 50 条
  • [21] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529
  • [22] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    Statistical Methods & Applications, 2022, 31 : 495 - 529
  • [23] Quadratic Programming and Penalized Regression
    Smith, Andrew D. A. C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (07) : 1363 - 1372
  • [24] PENALIZED LIKELIHOOD IN COX REGRESSION
    VERWEIJ, PJM
    VANHOUWELINGEN, HC
    STATISTICS IN MEDICINE, 1994, 13 (23-24) : 2427 - 2436
  • [25] Topologically penalized regression on manifolds
    Hacquard, Olympio
    Balasubramanian, Krishnakumar
    Blanchard, Gilles
    Levrard, Clement
    Polonik, Wolfgang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [26] Compressed and Penalized Linear Regression
    Homrighausen, Darren
    McDonald, Daniel J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 309 - 322
  • [27] Penalized quantile regression tree
    Kim, Jaeoh
    Cho, HyungJun
    Bang, Sungwan
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1361 - 1371
  • [28] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [29] Multidimensional penalized signal regression
    Marx, BD
    Eilers, PHC
    TECHNOMETRICS, 2005, 47 (01) : 13 - 22
  • [30] Penalized Regression with Ordinal Predictors
    Gertheiss, Jan
    Tutz, Gerhard
    INTERNATIONAL STATISTICAL REVIEW, 2009, 77 (03) : 345 - 365