Higher-Dimensional Stick Percolation

被引:0
|
作者
Erik I. Broman
机构
[1] Chalmers University of Technology and Gothenburg University,
来源
Journal of Statistical Physics | 2022年 / 186卷
关键词
Continuum-percolation; Stick percolation; Scaling exponent; Primary 60K35; Secondary 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two cases of the so-called stick percolation model with sticks of length L. In the first case, the orientation is chosen independently and uniformly, while in the second all sticks are oriented along the same direction. We study their respective critical values λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} of the percolation phase transition, and in particular we investigate the asymptotic behavior of λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} as L→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\rightarrow \infty $$\end{document} for both of these cases. In the first case we prove that λc(L)∼L-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-2}$$\end{document} for any d≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2,$$\end{document} while in the second we prove that λc(L)∼L-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-1}$$\end{document} for any d≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [41] Measuring higher-dimensional entanglement
    Datta, Chandan
    Agrawal, Pankaj
    Choudhary, Sujit K.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [42] Higher-dimensional parallel transports
    Gomi, K
    Terashima, Y
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (1-2) : 25 - 33
  • [43] HOMOLOGY OF HIGHER-DIMENSIONAL AUTOMATA
    GOUBAULT, E
    JENSEN, TP
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 630 : 254 - 268
  • [44] A category of higher-dimensional automata
    Fahrenberg, U
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2005, 3441 : 187 - 201
  • [45] On higher-dimensional Courant algebroids
    Paul Bressler
    Camilo Rengifo
    Letters in Mathematical Physics, 2018, 108 : 2099 - 2137
  • [46] Notes on higher-dimensional partitions
    Govindarajan, Suresh
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (03) : 600 - 622
  • [47] OSCILLATING SOLUTIONS IN HIGHER-DIMENSIONAL COSMOLOGY
    HENRIQUES, AB
    MOORHOUSE, RG
    PHYSICS LETTERS B, 1987, 194 (03) : 353 - 357
  • [48] Logic and Languages of Higher-Dimensional Automata
    Amrane, Amazigh
    Bazille, Hugo
    Fahrenberg, Uli
    Fortin, Marie
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2024, 2024, 14791 : 51 - 67
  • [49] HIGHER-DIMENSIONAL NONNESTED MULTIGRID METHODS
    SCOTT, LR
    ZHANG, SY
    MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 457 - 466
  • [50] SYMMETRY BREAKDOWN AND HIGHER-DIMENSIONAL MONOPOLES
    DJEMAI, AEF
    TAHIRI, M
    MODERN PHYSICS LETTERS A, 1991, 6 (24) : 2205 - 2209