Higher-Dimensional Stick Percolation

被引:0
|
作者
Erik I. Broman
机构
[1] Chalmers University of Technology and Gothenburg University,
来源
Journal of Statistical Physics | 2022年 / 186卷
关键词
Continuum-percolation; Stick percolation; Scaling exponent; Primary 60K35; Secondary 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two cases of the so-called stick percolation model with sticks of length L. In the first case, the orientation is chosen independently and uniformly, while in the second all sticks are oriented along the same direction. We study their respective critical values λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} of the percolation phase transition, and in particular we investigate the asymptotic behavior of λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} as L→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\rightarrow \infty $$\end{document} for both of these cases. In the first case we prove that λc(L)∼L-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-2}$$\end{document} for any d≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2,$$\end{document} while in the second we prove that λc(L)∼L-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-1}$$\end{document} for any d≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [31] Higher-Dimensional Timed Automata
    Fahrenberg, Uli
    IFAC PAPERSONLINE, 2018, 51 (16): : 109 - 114
  • [32] Higher-dimensional magnetic Skyrmions
    Gudnason, Sven Bjarke
    Bolognesi, Stefano
    Menta, Roberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (03):
  • [33] HIGHER-DIMENSIONAL FIBERED KNOTS
    ANDREWS, JJ
    SUMNERS, DW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 153 (JAN) : 415 - &
  • [34] SEARCH FOR HIGHER-DIMENSIONAL COSMOLOGIES
    GLEISER, M
    RAJPOOT, S
    TAYLOR, JG
    PHYSICAL REVIEW D, 1984, 30 (04): : 756 - 759
  • [35] Higher-dimensional multifractal analysis
    Barreira, L
    Saussol, B
    Schmeling, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (01): : 67 - 91
  • [36] Energy In higher-dimensional spacetimes
    Barzegar, Hamed
    Chrusciel, Piotr T.
    Hoerzinger, Michael
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [37] Higher-dimensional weak amenability
    Johnson, BE
    STUDIA MATHEMATICA, 1997, 123 (02) : 117 - 134
  • [38] A higher-dimensional Lehmer problem
    Amoroso, F
    David, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 513 : 145 - 179
  • [39] HIGHER-DIMENSIONAL SLICE KNOTS
    SUMNERS, DWL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (05) : 894 - &
  • [40] HIGHER-DIMENSIONAL SMITH CONJECTURE
    GORDON, CMA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 29 (JUL) : 98 - 110