Higher-Dimensional Stick Percolation

被引:0
|
作者
Erik I. Broman
机构
[1] Chalmers University of Technology and Gothenburg University,
来源
关键词
Continuum-percolation; Stick percolation; Scaling exponent; Primary 60K35; Secondary 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two cases of the so-called stick percolation model with sticks of length L. In the first case, the orientation is chosen independently and uniformly, while in the second all sticks are oriented along the same direction. We study their respective critical values λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} of the percolation phase transition, and in particular we investigate the asymptotic behavior of λc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)$$\end{document} as L→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\rightarrow \infty $$\end{document} for both of these cases. In the first case we prove that λc(L)∼L-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-2}$$\end{document} for any d≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2,$$\end{document} while in the second we prove that λc(L)∼L-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _c(L)\sim L^{-1}$$\end{document} for any d≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Higher-Dimensional Stick Percolation
    Broman, Erik I.
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
  • [2] On higher-dimensional dynamics
    Wesson, PS
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2423 - 2438
  • [3] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [4] HIGHER-DIMENSIONAL COSMOLOGIES
    LORENZPETZOLD, D
    PHYSICS LETTERS B, 1984, 148 (1-3) : 43 - 47
  • [5] HIGHER-DIMENSIONAL UNIFICATION
    FREUND, PGO
    PHYSICA D, 1985, 15 (1-2): : 263 - 269
  • [6] Languages of higher-dimensional automata
    Fahrenberg, Uli
    Johansen, Christian
    Struth, Georg
    Ziemianski, Krzysztof
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2021, 31 (05) : 575 - 613
  • [7] Higher-dimensional origami constructions
    Banerjee, Deveena R.
    Chari, Sara
    Salerno, Adriana
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (02): : 297 - 312
  • [8] HIGHER-DIMENSIONAL FIELD THEORY
    AHNER, HF
    ANDERSON, JL
    PHYSICAL REVIEW D, 1970, 1 (02): : 488 - &
  • [9] HIGHER-DIMENSIONAL WHITE HOLES
    GURIN, VS
    TROFIMENKO, AP
    PRAMANA-JOURNAL OF PHYSICS, 1991, 36 (05): : 511 - 518
  • [10] HIGHER-DIMENSIONAL BIANCHI COSMOLOGIES
    LORENZPETZOLD, D
    PHYSICS LETTERS B, 1986, 167 (02) : 157 - 162