Δ-groupoids in knot theory

被引:0
|
作者
R. M. Kashaev
机构
[1] Université de Genève,
[2] Section de mathématiques,undefined
来源
Geometriae Dedicata | 2011年 / 150卷
关键词
Knot theory; Ideal triangulation; Group; Malnormal subgroup; Groupoid; Ring; 20L05; 57M27; 16S10;
D O I
暂无
中图分类号
学科分类号
摘要
A Δ-groupoid is an algebraic structure which axiomatizes the combinatorics of a truncated tetrahedron. It is shown that there are relations of Δ-groupoids to rings, group pairs, and (ideal) triangulations of three-manifolds. In particular, we describe a class of representations of group pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H\subset G}$$\end{document} into the group of upper triangular two-by-two matrices over an arbitrary ring R, and associate to that group pair a universal ring so that any representation of that class factorizes through a respective ring homomorphism. These constructions are illustrated by two examples coming from knot theory, namely the trefoil and the figure-eight knots. It is also shown that one can associate a Δ-groupoid to ideal triangulations of knot complements, and a homology of Δ-groupoids is defined.
引用
收藏
页码:105 / 130
页数:25
相关论文
共 50 条
  • [31] Knot theory in handlebodies
    Häring-Oldenburg, R
    Lambropoulou, S
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (06) : 921 - 943
  • [32] INTRODUCTION TO KNOT THEORY
    TROTTER, HF
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (10): : 1146 - &
  • [33] KNOT THEORY IN CHEMISTRY
    BOECKMAN.J
    SCHILL, G
    TETRAHEDRON, 1974, 30 (13) : 1945 - 1957
  • [34] Parity in knot theory
    Manturov, V. O.
    SBORNIK MATHEMATICS, 2010, 201 (05) : 693 - 733
  • [35] Quasoids in Knot Theory
    F. G. Korablev
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 156 - 165
  • [36] Quasoids in Knot Theory
    Korablev, F. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 303 : 156 - 165
  • [37] Knot Policy Theory
    Breunig, Christian
    Koski, Chris
    Workman, Samuel
    POLICY STUDIES JOURNAL, 2016, 44 : S123 - S132
  • [38] Linking in knot theory
    Hsieh, Chun-Chung
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (08) : 957 - 962
  • [39] THE KNOT THEORY OF MOLECULES
    Sumners, D. W.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1987, 1 (01) : 1 - 14
  • [40] Classical Knot Theory
    Carter, J. Scott
    SYMMETRY-BASEL, 2012, 4 (01): : 225 - 250