Δ-groupoids in knot theory

被引:0
|
作者
R. M. Kashaev
机构
[1] Université de Genève,
[2] Section de mathématiques,undefined
来源
Geometriae Dedicata | 2011年 / 150卷
关键词
Knot theory; Ideal triangulation; Group; Malnormal subgroup; Groupoid; Ring; 20L05; 57M27; 16S10;
D O I
暂无
中图分类号
学科分类号
摘要
A Δ-groupoid is an algebraic structure which axiomatizes the combinatorics of a truncated tetrahedron. It is shown that there are relations of Δ-groupoids to rings, group pairs, and (ideal) triangulations of three-manifolds. In particular, we describe a class of representations of group pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H\subset G}$$\end{document} into the group of upper triangular two-by-two matrices over an arbitrary ring R, and associate to that group pair a universal ring so that any representation of that class factorizes through a respective ring homomorphism. These constructions are illustrated by two examples coming from knot theory, namely the trefoil and the figure-eight knots. It is also shown that one can associate a Δ-groupoid to ideal triangulations of knot complements, and a homology of Δ-groupoids is defined.
引用
收藏
页码:105 / 130
页数:25
相关论文
共 50 条
  • [21] The equational theory of paramedial cancellation groupoids
    Jezek, J
    Kepka, T
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (01) : 25 - 34
  • [22] Parametrized Homotopy Theory and Fundamental Groupoids
    Costenoble, Steven R.
    Waner, Stefan
    EQUIVARIANT ORDINARY HOMOLOGY AND COHOMOLOGY, 2016, 2178 : 155 - 202
  • [23] The equational theory of paramedial cancellation groupoids
    Jaroslav Ježek
    Tomáš Kepka
    Czechoslovak Mathematical Journal, 2000, 50 : 25 - 34
  • [24] Filter theory of extended implicative groupoids
    E. Sameri
    R. A. Borzooei
    D. Ebrahimi Bagha
    Soft Computing, 2021, 25 : 14499 - 14508
  • [25] Kasparov's equivariant theory and groupoids
    LeGall, PY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06): : 695 - 698
  • [26] Applications of Knot Theory: Using Knot Theory to Unravel Biochemistry Mysteries
    Price, Candice Renee
    ADVANCES IN THE MATHEMATICAL SCIENCES, 2016, 6 : 173 - 186
  • [27] Encyclopedia of Knot Theory
    Price, Candice
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (10): : 995 - 999
  • [28] Renormalization and knot theory
    Kreimer, D
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (04) : 479 - 581
  • [29] PARAMETRIZED KNOT THEORY
    OCKEN, S
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 5 (2-17) : 1 - 114
  • [30] Virtual knot theory
    Kauffman, LH
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (07) : 663 - 690