Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics

被引:8
|
作者
Huang, Sizhe [1 ,2 ]
Liu, Xinyue [3 ]
Lin, Shaoting [4 ]
Glynn, Christopher [2 ]
Felix, Kayla [2 ]
Sahasrabudhe, Atharva [5 ]
Maley, Collin [2 ]
Xu, Jingyi [2 ]
Chen, Weixuan [2 ]
Hong, Eunji [1 ,2 ]
Crosby, Alfred J. [6 ]
Wang, Qianbin [1 ,2 ]
Rao, Siyuan [1 ,2 ]
机构
[1] SUNY Binghamton, Binghamton Univ, Dept Biomed Engn, Binghamton, NY 13850 USA
[2] Univ Massachusetts, Dept Biomed Engn, Amherst, MA 01003 USA
[3] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI USA
[4] Michigan State Univ, Dept Mech Engn, E Lansing, MI USA
[5] MIT, Res Lab Elect, Cambridge, MA USA
[6] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NANOFABRICATION; DYNAMICS; FATIGUE;
D O I
10.1038/s41467-024-47988-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 +/- 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Interface Processing of Amorphous-crystalline Silicon Heterojunction Prior to the Formation of Amorphous-to-nanocrystalline Transition Phase
    Zhang, Liping
    Liu, Wenzhu
    Guo, Wanwu
    Bao, Jian
    Zhang, Xiaoyu
    Liu, Jinning
    Wang, Dongliang
    Meng, Fanying
    Liu, Zhengxin
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [42] Highly Efficient Manganese Bromides with Reversible Luminescence Switching through Amorphous-Crystalline Transition
    Tan, Guang-Hsun
    Lin, Hao-Cheng
    Liang, Hao-Chi
    Pao, Chih-Wen
    Chen, Po-Yu
    Chuang, Wei-Tsung
    Hsieh, Chung-An
    Dorrah, Dalia M.
    Li, Ming-Chia
    Chen, Li-Yin
    Chou, Ho-Hsiu
    Lin, Hao-Wu
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) : 55842 - 55851
  • [43] AMORPHOUS-CRYSTALLINE PHASE-TRANSITION OF THE ALLOY NI71B29
    KUHNAST, FA
    MACHIZAUD, F
    VANGELISTI, R
    FLECHON, J
    JOURNAL DE MICROSCOPIE ET DE SPECTROSCOPIE ELECTRONIQUES, 1980, 5 (06): : 735 - &
  • [44] The Tunable Amorphous-Crystalline Transition Temperature by Indium-Doping on GeTe Thin Films
    Shang, Fei
    Zhai, Jiwei
    Wang, Changzhou
    Yao, Xi
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) : 7511 - 7514
  • [45] Amorphous-crystalline phase transition during the growth of thin films: The case of microcrystalline silicon
    Birkholz, M
    Selle, B
    Fuhs, W
    Christiansen, S
    Strunk, HP
    Reich, R
    PHYSICAL REVIEW B, 2001, 64 (08)
  • [46] CHANGES IN ELECTRICAL-RESISTIVITY DURING AMORPHOUS-CRYSTALLINE PHASE-TRANSITION OF ANTIMONY FILMS
    MAKI, K
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1974, : 649 - 652
  • [47] Influence of the Preparation Method on Amorphous-Crystalline Transition in Fe84B16 Alloy
    D. Yu. Kovalev
    N. F. Shkodich
    S. G. Vadchenko
    A. S. Rogachev
    A. S. Aronin
    Technical Physics, 2019, 64 : 1808 - 1813
  • [48] Influence of the Preparation Method on Amorphous-Crystalline Transition in Fe84B16 Alloy
    Kovalev, D. Yu.
    Shkodich, N. F.
    Vadchenko, S. G.
    Rogachev, A. S.
    Aronin, A. S.
    TECHNICAL PHYSICS, 2019, 64 (12) : 1808 - 1813
  • [49] FEATURES OF LIQUID AND AMORPHOUS-CRYSTALLINE SEPARATION IN BLOCK CO-POLYMERS AND MIXTURES WITH VARIABLE MOLECULAR MASSES
    SHIBANOV, YD
    GODOVSKII, YK
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1983, 25 (02): : 339 - 345
  • [50] MACRO-IMPERFECTION AND CRITICAL CHARACTERISTICS OF DEFORMATION AND DESTRUCTION OF AMORPHOUS-CRYSTALLINE POLYMERS IN LIQUID INACTIVE MEDIA
    MANIN, VN
    KONDRATOV, AP
    KOSAREV, IS
    DOKLADY AKADEMII NAUK SSSR, 1979, 246 (03): : 653 - 656