Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics

被引:8
|
作者
Huang, Sizhe [1 ,2 ]
Liu, Xinyue [3 ]
Lin, Shaoting [4 ]
Glynn, Christopher [2 ]
Felix, Kayla [2 ]
Sahasrabudhe, Atharva [5 ]
Maley, Collin [2 ]
Xu, Jingyi [2 ]
Chen, Weixuan [2 ]
Hong, Eunji [1 ,2 ]
Crosby, Alfred J. [6 ]
Wang, Qianbin [1 ,2 ]
Rao, Siyuan [1 ,2 ]
机构
[1] SUNY Binghamton, Binghamton Univ, Dept Biomed Engn, Binghamton, NY 13850 USA
[2] Univ Massachusetts, Dept Biomed Engn, Amherst, MA 01003 USA
[3] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI USA
[4] Michigan State Univ, Dept Mech Engn, E Lansing, MI USA
[5] MIT, Res Lab Elect, Cambridge, MA USA
[6] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NANOFABRICATION; DYNAMICS; FATIGUE;
D O I
10.1038/s41467-024-47988-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 +/- 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Measuring the multifunctional properties of MoS2 2 across the amorphous-crystalline transition using colorimetric sensing
    Ocana-Pujol, Jose L.
    Gallivan, Rebecca A.
    Ordonez, Ramon Camilo Dominguez
    Porenta, Nikolaus
    Mueller, Arnold
    Vockenhuber, Christof
    Spolenak, Ralph
    Galinski, Henning
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [22] Amorphous-crystalline transition studied in hydrated MoO3
    Carnacho-Lopez, M. A.
    Haro-Poniatowski, E.
    Lartundo-Rojas, L.
    Livage, J.
    Julien, C. M.
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 135 (02): : 88 - 94
  • [23] The amorphous-crystalline transition in SinH2m nanoclusters
    Bushlanova, Natalia
    Baturin, Vladimir
    Lepeshkin, Sergey
    Uspenskii, Yurii
    NANOSCALE, 2021, 13 (45) : 19181 - 19189
  • [24] THE DISTRIBUTION OF COMPONENTS IN MIXTURES OF AMORPHOUS-CRYSTALLINE POLYMERS WITH POLYMER AND OLIGOMER ADDITIONS
    BUDTOV, VP
    SIROTA, AG
    DOKLADY AKADEMII NAUK SSSR, 1982, 263 (03): : 627 - 629
  • [25] Hydrostatic weighing as a method to study swelling of amorphous-crystalline polymers in liquids
    Mizerovskii, LN
    Pochivalov, KV
    Afanas'eva, VV
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1999, 72 (06) : 1058 - 1061
  • [26] RELATIONSHIP BETWEEN THE FORCED ELASTICITY LIMIT AND THE STRUCTURE FOR AMORPHOUS-CRYSTALLINE POLYMERS
    MASHUKOV, NI
    BELOUSOV, VN
    KOZLOV, GV
    OVCHARENKO, EN
    GLADYSHEV, GP
    BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL SCIENCE, 1990, 39 (09): : 1952 - 1954
  • [27] TEMPERATURE-TIME CHANGE OF PROPERTIES OF LOW-PLASTIFIED AMORPHOUS AND AMORPHOUS-CRYSTALLINE POLYMERS
    OVCHINNIKOV, IV
    GOLUB, IG
    TEPLOV, BF
    GORSHENKOV, IM
    DOKLADY AKADEMII NAUK SSSR, 1981, 258 (04): : 946 - 949
  • [28] Amorphous-crystalline transition in Si/Ge superlattice during ion implantation
    Sobolev, NA
    Kaiser, U
    Khodos, II
    Presting, H
    König, U
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1999, 63 (07): : 1352 - 1357
  • [29] Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters
    Molinari, M
    Rinnert, H
    Vergnat, M
    EUROPHYSICS LETTERS, 2004, 66 (05): : 674 - 679
  • [30] RAYLEIGH LIGHT-SCATTERING IN AMORPHOUS-CRYSTALLINE POLYMERS RELATED WITH LOCALIZED PHONONES
    ZABASHTA, YF
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA B, 1990, 32 (01): : 65 - 66