Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics

被引:8
|
作者
Huang, Sizhe [1 ,2 ]
Liu, Xinyue [3 ]
Lin, Shaoting [4 ]
Glynn, Christopher [2 ]
Felix, Kayla [2 ]
Sahasrabudhe, Atharva [5 ]
Maley, Collin [2 ]
Xu, Jingyi [2 ]
Chen, Weixuan [2 ]
Hong, Eunji [1 ,2 ]
Crosby, Alfred J. [6 ]
Wang, Qianbin [1 ,2 ]
Rao, Siyuan [1 ,2 ]
机构
[1] SUNY Binghamton, Binghamton Univ, Dept Biomed Engn, Binghamton, NY 13850 USA
[2] Univ Massachusetts, Dept Biomed Engn, Amherst, MA 01003 USA
[3] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI USA
[4] Michigan State Univ, Dept Mech Engn, E Lansing, MI USA
[5] MIT, Res Lab Elect, Cambridge, MA USA
[6] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NANOFABRICATION; DYNAMICS; FATIGUE;
D O I
10.1038/s41467-024-47988-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 +/- 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Microhardness of oriented amorphous-crystalline polymers
    V. A. Beloshenko
    Yu. V. Voznyak
    Materials Science, 2013, 49 : 110 - 116
  • [2] Microhardness of oriented amorphous-crystalline polymers
    Beloshenko, V. A.
    Voznyak, Yu. V.
    MATERIALS SCIENCE, 2013, 49 (01) : 110 - 116
  • [3] AMORPHOUS-CRYSTALLINE TRANSITION IN GERMANIUM FILMS
    JOHANNESSEN, JS
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1974, 26 (02): : 571 - 577
  • [4] INTERPHASE MAGNETIZATION EXCHANGE IN AMORPHOUS-CRYSTALLINE POLYMERS
    GRIGOREV, VP
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA B, 1984, 26 (10): : 732 - 735
  • [5] MICRODEFORMATIONAL PROPERTIES OF ORIENTED AMORPHOUS-CRYSTALLINE POLYMERS
    GINZBURG, BM
    TUICHIEV, S
    KUZNETSOVA, AM
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1991, 33 (02): : 327 - 333
  • [6] AMORPHOUS-CRYSTALLINE TRANSITION IN GE FILMS BY PHOTOEMISSION
    LAUDE, LD
    WILLIS, RF
    FITTON, B
    SOLID STATE COMMUNICATIONS, 1973, 12 (10) : 1007 - 1011
  • [7] STRUCTURAL TRANSITIONS DURING DEFORMATION OF AMORPHOUS-CRYSTALLINE POLYMERS
    GROMOV, VI
    BARANOV, VG
    FRENKEL, SY
    SOVIET PHYSICS SOLID STATE,USSR, 1970, 11 (12): : 2931 - +
  • [8] Analysis of deformation process characteristics in amorphous-crystalline polymers
    L. A. Golotina
    V. P. Matveenko
    I. N. Shardakov
    Mechanics of Solids, 2012, 47 : 634 - 640
  • [9] Analysis of deformation process characteristics in amorphous-crystalline polymers
    Golotina, L. A.
    Matveenko, V. P.
    Shardakov, I. N.
    MECHANICS OF SOLIDS, 2012, 47 (06) : 634 - 640
  • [10] A STRUCTURAL-MECHANICAL MODEL OF AMORPHOUS-CRYSTALLINE POLYMERS
    KOSTRITSKII, VV
    MECHANICS OF COMPOSITE MATERIALS, 1990, 26 (04) : 419 - 426