Structural Bayesian Linear Regression for Hidden Markov Models

被引:0
|
作者
Shinji Watanabe
Atsushi Nakamura
Biing-Hwang (Fred) Juang
机构
[1] Mitsubishi Electric Research Laboratories (MERL),NTT Communication Science Laboratories
[2] NTT Corporation,Center for Signal and Image Processing
[3] Georgia Institute of Technology,undefined
来源
关键词
Hidden Markov model; Linear regression; Variational bayes; Structural prior;
D O I
暂无
中图分类号
学科分类号
摘要
Linear regression for Hidden Markov Model (HMM) parameters is widely used for the adaptive training of time series pattern analysis especially for speech processing. The regression parameters are usually shared among sets of Gaussians in HMMs where the Gaussian clusters are represented by a tree. This paper realizes a fully Bayesian treatment of linear regression for HMMs considering this regression tree structure by using variational techniques. This paper analytically derives the variational lower bound of the marginalized log-likelihood of the linear regression. By using the variational lower bound as an objective function, we can algorithmically optimize the tree structure and hyper-parameters of the linear regression rather than heuristically tweaking them as tuning parameters. Experiments on large vocabulary continuous speech recognition confirm the generalizability of the proposed approach, especially when the amount of adaptation data is limited.
引用
收藏
页码:341 / 358
页数:17
相关论文
共 50 条
  • [21] BAYESIAN SENSING HIDDEN MARKOV MODELS FOR SPEECH RECOGNITION
    Saon, George
    Chien, Jen-Tzung
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5056 - 5059
  • [22] Bayesian Nonparametric Hidden Semi-Markov Models
    Johnson, Matthew J.
    Willsky, Alan S.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 673 - 701
  • [23] Computational Bayesian analysis of hidden Markov Mesh models
    Dunmur, A.P.
    Titterington, D.M.
    1997, IEEE Comp Soc, Los Alamitos, CA, United States (19)
  • [24] Bayesian estimation of ion channel hidden Markov models
    Rosales, R
    Stark, JA
    Fitzgerald, W
    Hladky, SB
    BIOPHYSICAL JOURNAL, 1998, 74 (02) : A321 - A321
  • [25] Estimation of Viterbi path in Bayesian hidden Markov models
    Lember, Juri
    Gasbarra, Dario
    Koloydenko, Alexey
    Kuljus, Kristi
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 137 - 169
  • [26] Estimation of Viterbi path in Bayesian hidden Markov models
    Jüri Lember
    Dario Gasbarra
    Alexey Koloydenko
    Kristi Kuljus
    METRON, 2019, 77 : 137 - 169
  • [27] Akaike and Bayesian Information Criteria for Hidden Markov Models
    Dridi, Noura
    Hadzagic, Melita
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (02) : 302 - 306
  • [28] Hidden Markov chains in generalized linear models
    Turner, TR
    Cameron, MA
    Thomson, PJ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 107 - 125
  • [29] Regression and Hidden Markov Models for Gold Price Prediction
    Shen, Li
    Shen, Kun
    Yi, Chao
    Chen, Yixin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5451 - 5456
  • [30] Generalized linear mixed hidden semi-Markov models in longitudinal settings: A Bayesian approach
    Haji-Maghsoudi, Saiedeh
    Bulla, Jan
    Sadeghifar, Majid
    Roshanaei, Ghodratollah
    Mahjub, Hossein
    STATISTICS IN MEDICINE, 2021, 40 (10) : 2373 - 2388