Akaike and Bayesian Information Criteria for Hidden Markov Models

被引:35
|
作者
Dridi, Noura [1 ]
Hadzagic, Melita [2 ]
机构
[1] Univ Gabes, Hatem Bettaher IResCoMath Res Unit, Natl Engn Sch Gabes, Gabes 6029, Tunisia
[2] OODA Technol, Montreal, PQ H4C 2C7, Canada
关键词
Akaike information criterion (AIC); bayesian information criterion (BIC); hidden markov model (HMM); model selection; blind estimation; LIKELIHOOD;
D O I
10.1109/LSP.2018.2886933
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the Bayesian information criterion (BIC) and the Akaike information criterion (AIC) for model selection in hidden Markov models (HMM) when the number of states is unknown. The exact solutions exploit the properties of HMM that allow tractable forms of both criteria to he obtained while transgressing the common assumption in AIC and BIC model selection approaches on the independence of data. The proposed algorithm is presented and evaluated in application to blind channel estimation and symbol detection when the channel length is assumed unknown.
引用
收藏
页码:302 / 306
页数:5
相关论文
共 50 条
  • [1] Kullback-Leibler Divergence and Akaike Information Criterion in General Hidden Markov Models
    Fuh, Cheng-Der
    Kao, Chu-Lan Michael
    Pang, Tianxiao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (08) : 5888 - 5909
  • [2] Probabilistic tensor analysis with Akaike and Bayesian information criteria
    Tao, Dacheng
    Sun, Jimeng
    Wu, Xindong
    Li, Xuelong
    Shen, Jialie
    Maybank, Stephen J.
    Faloutsos, Christos
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 791 - +
  • [3] Error Statistics Using the Akaike and Bayesian Information Criteria
    Cheng, Henrique
    Sterner, Beckett
    ERKENNTNIS, 2024,
  • [4] Bayesian classification of Hidden Markov Models
    Kehagias, A
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (05) : 25 - 43
  • [5] Bayesian Sensing Hidden Markov Models
    Saon, George
    Chien, Jen-Tzung
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01): : 43 - 54
  • [6] DNA microarray data clustering by hidden Markov models and Bayesian information criterion
    Charoenkwan, Phasit
    Manorat, Aompilai
    Chaijaruwanich, Jeerayut
    Prasitwattanaseree, Sukon
    Bhumiratana, Sakarindr
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 827 - 834
  • [7] Finding the number of latent states in hidden Markov models using information criteria
    Jodie Buckby
    Ting Wang
    David Fletcher
    Jiancang Zhuang
    Akiko Takeo
    Kazushige Obara
    Environmental and Ecological Statistics, 2023, 30 : 797 - 825
  • [8] Finding the number of latent states in hidden Markov models using information criteria
    Buckby, Jodie
    Wang, Ting
    Fletcher, David
    Zhuang, Jiancang
    Takeo, Akiko
    Obara, Kazushige
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2023, 30 (04) : 797 - 825
  • [9] VARIATIONAL BAYESIAN ANALYSIS FOR HIDDEN MARKOV MODELS
    McGrory, C. A.
    Titterington, D. M.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2009, 51 (02) : 227 - 244
  • [10] Bayesian hidden Markov models for longitudinal counts
    Ridall, PG
    Pettitt, AN
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2005, 47 (02) : 129 - 145