Deformations of filiform Lie algebras and symplectic structures

被引:0
|
作者
Millionshchikov D.V. [1 ]
机构
[1] Faculty of Mechanics and Mathematics, Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Linear Equation; Modulus Space; Projective Space; Maximal Length; Structure Relation;
D O I
10.1134/S0081543806010172
中图分类号
学科分类号
摘要
We study symplectic structures on filiform Lie algebras, which are niplotent Lie algebras with the maximal length of the descending central sequence. Let g be a symplectic filiform Lie algebra and dim g = 2k ≥ 12. Then g is isomorphic to some double struck N sign-filtered deformation either of m0(2k) (defined by the structure relations [e 1, e i ] = e i+1, i = 2,...,2k - 1) or of V 2k, the quotient of the positive part of the Witt algebra W + by the ideal of elements of degree greater than 2k. We classify ℕ-filtered deformations of V n : [e i, e j ] = (j - i)e i+1 + ∑ l ≥ 1 c ij l e i+j+l . For dim g = n ≥ 16, the moduli space Mn of these deformations is the weighted projective space double struck K signP4(n - 11,n - 10,n - 9,n - 8,n - 7). For even n, the subspace of symplectic Lie algebras is determined by a single linear equation. © Pleiades Publishing, Inc., 2006.
引用
收藏
页码:182 / 204
页数:22
相关论文
共 50 条
  • [41] FILIFORM LIE ALGEBRAS OF DIMENSION 8 AS DEGENERATIONS
    Felipe Herrera-Granada, Joan
    Tirao, Paulo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (04)
  • [42] Filiform N-graded Lie algebras
    Millionshchikov, DV
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (02) : 422 - 424
  • [43] CLASSIFICATION OF FILIFORM SOLVABLE LIE-ALGEBRAS
    SUND, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (02): : 145 - 148
  • [44] (n-4)-filiform Lie algebras
    Cabezas, JM
    Gómez, JR
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4803 - 4819
  • [45] Degenerations to filiform Lie algebras of dimension 9
    Herrera-Granada, Joan Felipe
    Marquez, Oscar
    Vera, Sonia
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (02) : 836 - 847
  • [46] There are No Rigid Filiform Lie Algebras of Low Dimension
    Tirao, Paulo
    Vera, Sonia
    JOURNAL OF LIE THEORY, 2019, 29 (02) : 391 - 412
  • [47] Economizing Brackets to Define Filiform Lie Algebras
    Nunez, Juan
    JOURNAL OF LIE THEORY, 2008, 18 (04) : 951 - 959
  • [48] Computing Matrix Representations of Filiform Lie Algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 61 - +
  • [49] Classification of filiform Lie algebras of order 3
    Navarro, Rosa Maria
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 110 : 248 - 258
  • [50] Completeness of quasi-filiform Lie algebras
    Almaraz Luengo, E.
    Ancochea Bermudez, J. M.
    Garcia Vergnolle, L.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 582 - 595