Deformations of filiform Lie algebras and symplectic structures

被引:0
|
作者
Millionshchikov D.V. [1 ]
机构
[1] Faculty of Mechanics and Mathematics, Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Linear Equation; Modulus Space; Projective Space; Maximal Length; Structure Relation;
D O I
10.1134/S0081543806010172
中图分类号
学科分类号
摘要
We study symplectic structures on filiform Lie algebras, which are niplotent Lie algebras with the maximal length of the descending central sequence. Let g be a symplectic filiform Lie algebra and dim g = 2k ≥ 12. Then g is isomorphic to some double struck N sign-filtered deformation either of m0(2k) (defined by the structure relations [e 1, e i ] = e i+1, i = 2,...,2k - 1) or of V 2k, the quotient of the positive part of the Witt algebra W + by the ideal of elements of degree greater than 2k. We classify ℕ-filtered deformations of V n : [e i, e j ] = (j - i)e i+1 + ∑ l ≥ 1 c ij l e i+j+l . For dim g = n ≥ 16, the moduli space Mn of these deformations is the weighted projective space double struck K signP4(n - 11,n - 10,n - 9,n - 8,n - 7). For even n, the subspace of symplectic Lie algebras is determined by a single linear equation. © Pleiades Publishing, Inc., 2006.
引用
收藏
页码:182 / 204
页数:22
相关论文
共 50 条
  • [31] Flat symplectic Lie algebras
    Boucetta, Mohamed
    El Ouali, Hamza
    Lebzioui, Hicham
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4382 - 4399
  • [32] Metric Symplectic Lie Algebras
    Fischer, Mathias
    JOURNAL OF LIE THEORY, 2019, 29 (01) : 191 - 220
  • [33] Filiform Lie Algebras with Low Derived Length
    F. J. Castro-Jiménez
    M. Ceballos
    J. Núñez-Valdés
    Mediterranean Journal of Mathematics, 2020, 17
  • [34] CLASSIFICATION OF FILIFORM SOLVABLE LIE-ALGEBRAS
    SUND, T
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (11) : 4303 - 4359
  • [35] On the k-Abelian filiform Lie algebras
    Gomez, JR
    Goze, M
    Khakimdjanov, Y
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (02) : 431 - 450
  • [36] Quasi Qn-Filiform Lie Algebras
    Ren, Bin
    Zhu, Linsheng
    ALGEBRA COLLOQUIUM, 2011, 18 (01) : 139 - 154
  • [37] Low-dimensional filiform Lie algebras
    Gomez, JR
    Jimenez-Merchan, A
    Khakimdjanov, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (02) : 133 - 158
  • [38] Quasi Ln-filiform Lie algebras
    Ren, B
    Hu, NH
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) : 633 - 648
  • [39] The cohomology of filiform Lie algebras of maximal rank
    Cagliero, Leandro
    Tirao, Paulo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 455 : 143 - 167
  • [40] On certain graded representations of filiform Lie algebras
    Bernik, Janez
    Sivic, Klemen
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2305 - 2327