Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field

被引:0
|
作者
Denis Bonheure
Silvia Cingolani
Manon Nys
机构
[1] Université libre de Bruxelles,Département de Mathématique
[2] INRIA-Team MEPHYSTO,Dipartimento di Meccanica, Matematica e Management
[3] Politecnico di Bari,Fonds National de la Recherche Scientifique
[4] Université Libre de Bruxelles,FNRS, Département de Mathématique
[5] Università degli Studi di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
关键词
35Q55 (NLS-like equations); 35J20 (Variational methods for second-order elliptic equations); 35Q40 (PDE in connection with Quantum Mechanics); 35B06 (Symmetries, invariants, ect);
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the semiclassical limit for the stationary magnetic nonlinear Schrödinger equation iħ∇+A(x)2u+V(x)u=|u|p-2u,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( i \hbar \nabla + A(x) \right) ^2 u + V(x) u = |u|^{p-2} u, \quad x\in \mathbb {R}^{3}, \end{aligned}$$\end{document}where p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}, A is a vector potential associated to a given magnetic field B, i.e ∇×A=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \times A =B$$\end{document} and V is a nonnegative, scalar (electric) potential which can be singular at the origin and vanish at infinity or outside a compact set. We assume that A and V satisfy a cylindrical symmetry. By a refined penalization argument, we prove the existence of semiclassical cylindrically symmetric solutions of (0.1) whose moduli concentrate, as ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document}, around a circle. We emphasize that the concentration is driven by the magnetic and the electric potentials. Our result thus shows that in the semiclassical limit, the magnetic field also influences the location of the solutions of (0.1) if their concentration occurs around a locus, not a single point.
引用
收藏
相关论文
共 50 条
  • [41] On discretizations of the vector nonlinear Schrödinger equation
    Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO 80309, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (287-304):
  • [42] On the Dynamics of Solitons in the Nonlinear Schrödinger Equation
    Vieri Benci
    Marco Ghimenti
    Anna Maria Micheletti
    Archive for Rational Mechanics and Analysis, 2012, 205 : 467 - 492
  • [43] On Solutions to the Matrix Nonlinear Schrödinger Equation
    A. V. Domrin
    Computational Mathematics and Mathematical Physics, 2022, 62 : 920 - 932
  • [44] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [45] Colliding Solitons for the Nonlinear Schrödinger Equation
    W. K. Abou Salem
    J. Fröhlich
    I. M. Sigal
    Communications in Mathematical Physics, 2009, 291 : 151 - 176
  • [46] Nonlinear Schrödinger equation and superfluid hydrodynamics
    C. Coste
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 1 : 245 - 253
  • [47] Weak collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics Letters, 1999, 69 : 418 - 422
  • [48] Unidirectional flow of symbiotic solitons and nonlinear modes of the Schrödinger equation with an external potential
    A. Javed
    H. Susanto
    R. Kusdiantara
    I. Kourakis
    The European Physical Journal Plus, 137
  • [49] Nonlinear Schrödinger equation and classical-field description of thermal radiation
    Sergey A. Rashkovskiy
    Indian Journal of Physics, 2018, 92 : 289 - 302
  • [50] Multiple solutions to a nonlinear Schrödinger equation with Aharonov–Bohm magnetic potential
    Mónica Clapp
    Andrzej Szulkin
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 229 - 248