Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field

被引:0
|
作者
Denis Bonheure
Silvia Cingolani
Manon Nys
机构
[1] Université libre de Bruxelles,Département de Mathématique
[2] INRIA-Team MEPHYSTO,Dipartimento di Meccanica, Matematica e Management
[3] Politecnico di Bari,Fonds National de la Recherche Scientifique
[4] Université Libre de Bruxelles,FNRS, Département de Mathématique
[5] Università degli Studi di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
关键词
35Q55 (NLS-like equations); 35J20 (Variational methods for second-order elliptic equations); 35Q40 (PDE in connection with Quantum Mechanics); 35B06 (Symmetries, invariants, ect);
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the semiclassical limit for the stationary magnetic nonlinear Schrödinger equation iħ∇+A(x)2u+V(x)u=|u|p-2u,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( i \hbar \nabla + A(x) \right) ^2 u + V(x) u = |u|^{p-2} u, \quad x\in \mathbb {R}^{3}, \end{aligned}$$\end{document}where p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}, A is a vector potential associated to a given magnetic field B, i.e ∇×A=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \times A =B$$\end{document} and V is a nonnegative, scalar (electric) potential which can be singular at the origin and vanish at infinity or outside a compact set. We assume that A and V satisfy a cylindrical symmetry. By a refined penalization argument, we prove the existence of semiclassical cylindrically symmetric solutions of (0.1) whose moduli concentrate, as ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document}, around a circle. We emphasize that the concentration is driven by the magnetic and the electric potentials. Our result thus shows that in the semiclassical limit, the magnetic field also influences the location of the solutions of (0.1) if their concentration occurs around a locus, not a single point.
引用
收藏
相关论文
共 50 条
  • [31] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [32] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559
  • [33] Perturbations of the Defocusing Nonlinear Schrödinger Equation
    B. Grébert
    T. Kappeler
    Milan Journal of Mathematics, 2003, 71 (1) : 141 - 174
  • [34] On a class of nonlinear inhomogeneous Schrödinger equation
    Chen J.
    Journal of Applied Mathematics and Computing, 2010, 32 (01) : 237 - 253
  • [35] The nonlinear Schrödinger equation in cylindrical geometries
    Krechetnikov, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (15)
  • [36] Nonlinear Schrödinger Equation and the Hyperbolization Method
    A. D. Yunakovsky
    Computational Mathematics and Mathematical Physics, 2022, 62 : 1112 - 1130
  • [37] Symmetries of the Discrete Nonlinear Schrödinger Equation
    R. Hernández Heredero
    D. Levi
    P. Winternitz
    Theoretical and Mathematical Physics, 2001, 127 : 729 - 737
  • [38] The elliptic breather for the nonlinear Schrödinger equation
    Smirnov A.O.
    Journal of Mathematical Sciences, 2013, 192 (1) : 117 - 125
  • [39] The inverse problem for a nonlinear Schrödinger equation
    Yagubov G.Ya.
    Musaeva M.A.
    Journal of Mathematical Sciences, 1999, 97 (2) : 3981 - 3984
  • [40] Nonlinear Schrödinger equation for integrated photonics
    Gravesen, Kevin Bach
    Gardner, Asger Brimnes
    Ulsig, Emil Zanchetta
    Stanton, Eric J.
    Hansen, Mikkel Torrild
    Thomsen, Simon Thorndahl
    Ahler, Lucas
    Volet, Nicolas
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (06) : 1451 - 1456