Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic field

被引:0
|
作者
Denis Bonheure
Silvia Cingolani
Manon Nys
机构
[1] Université libre de Bruxelles,Département de Mathématique
[2] INRIA-Team MEPHYSTO,Dipartimento di Meccanica, Matematica e Management
[3] Politecnico di Bari,Fonds National de la Recherche Scientifique
[4] Université Libre de Bruxelles,FNRS, Département de Mathématique
[5] Università degli Studi di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
关键词
35Q55 (NLS-like equations); 35J20 (Variational methods for second-order elliptic equations); 35Q40 (PDE in connection with Quantum Mechanics); 35B06 (Symmetries, invariants, ect);
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the semiclassical limit for the stationary magnetic nonlinear Schrödinger equation iħ∇+A(x)2u+V(x)u=|u|p-2u,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( i \hbar \nabla + A(x) \right) ^2 u + V(x) u = |u|^{p-2} u, \quad x\in \mathbb {R}^{3}, \end{aligned}$$\end{document}where p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}, A is a vector potential associated to a given magnetic field B, i.e ∇×A=B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \times A =B$$\end{document} and V is a nonnegative, scalar (electric) potential which can be singular at the origin and vanish at infinity or outside a compact set. We assume that A and V satisfy a cylindrical symmetry. By a refined penalization argument, we prove the existence of semiclassical cylindrically symmetric solutions of (0.1) whose moduli concentrate, as ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document}, around a circle. We emphasize that the concentration is driven by the magnetic and the electric potentials. Our result thus shows that in the semiclassical limit, the magnetic field also influences the location of the solutions of (0.1) if their concentration occurs around a locus, not a single point.
引用
收藏
相关论文
共 50 条