Topology and Geometry of Random 2-Dimensional Hypertrees

被引:0
|
作者
Matthew Kahle
Andrew Newman
机构
[1] The Ohio State University,Chair of Discrete Mathematics / Geometry
[2] Technische Universität Berlin,undefined
来源
关键词
Random simplicial complexes; Hypertrees; Hyperbolic groups; 55U10; 60B99; 20F67;
D O I
暂无
中图分类号
学科分类号
摘要
A hypertree, or Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-acyclic complex, is a higher-dimensional analogue of a tree. We study random 2-dimensional hypertrees according to the determinantal measure suggested by Lyons. We are especially interested in their topological and geometric properties. We show that with high probability, a random 2-dimensional hypertree T is aspherical, i.e., that it has a contractible universal cover. We also show that with high probability the fundamental group π1(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1(T)$$\end{document} is hyperbolic and has cohomological dimension 2.
引用
收藏
页码:1229 / 1244
页数:15
相关论文
共 50 条
  • [41] 2-DIMENSIONAL SECTIONS OF MISCIBILITY GAPS - THE ROSE GEOMETRY
    MORRAL, JE
    GUPTA, H
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1993, 90 (02) : 421 - 427
  • [42] Recognition of Paths and Curves in the 2-Dimensional Euclidean Geometry
    Oren, Idris
    Khadjiev, Djavvat
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 116 - 134
  • [43] STRIPE-GEOMETRY 2-DIMENSIONAL DAMMANN GRATINGS
    TURUNEN, J
    VASARA, A
    WESTERHOLM, J
    SALIN, A
    OPTICS COMMUNICATIONS, 1989, 74 (3-4) : 245 - 252
  • [44] Geometry of integrable dynamical systems on 2-dimensional surfaces
    Nguyen Tien Zung
    Nguyen Van Minh
    Acta Mathematica Vietnamica, 2013, 38 (1) : 79 - 106
  • [45] GEOMETRY, TOPOLOGY, AND UNIVERSALITY OF RANDOM SURFACES
    BANAVAR, JR
    MARITAN, A
    STELLA, A
    SCIENCE, 1991, 252 (5007) : 825 - 827
  • [46] Geometry and topology of spin random fields
    Lerario, Antonio
    Marinucci, Domenico
    Rossi, Maurizia
    Stecconi, Michele
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [47] RANDOM BONDS AND RANDOM-FIELDS IN 2-DIMENSIONAL ORIENTATIONAL GLASSES
    HOLDSWORTH, PCW
    GINGRAS, MJP
    BERGERSEN, B
    CHAN, EP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (35) : 6679 - 6694
  • [48] BISPECTRAL ANALYSIS OF 2-DIMENSIONAL RANDOM-PROCESSES
    CHANDRAN, V
    ELGAR, S
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (12): : 2181 - 2186
  • [49] RANGE OF A RANDOM-WALK IN 2-DIMENSIONAL TIME
    ETEMADI, N
    ANNALS OF PROBABILITY, 1976, 4 (05): : 836 - 843
  • [50] ON THE OPTIMAL MAP IN THE 2-DIMENSIONAL RANDOM MATCHING PROBLEM
    Ambrosio, Luigi
    Glaudo, Federico
    Trevisan, Dario
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (12) : 7291 - 7308