Topology and Geometry of Random 2-Dimensional Hypertrees

被引:0
|
作者
Matthew Kahle
Andrew Newman
机构
[1] The Ohio State University,Chair of Discrete Mathematics / Geometry
[2] Technische Universität Berlin,undefined
来源
关键词
Random simplicial complexes; Hypertrees; Hyperbolic groups; 55U10; 60B99; 20F67;
D O I
暂无
中图分类号
学科分类号
摘要
A hypertree, or Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-acyclic complex, is a higher-dimensional analogue of a tree. We study random 2-dimensional hypertrees according to the determinantal measure suggested by Lyons. We are especially interested in their topological and geometric properties. We show that with high probability, a random 2-dimensional hypertree T is aspherical, i.e., that it has a contractible universal cover. We also show that with high probability the fundamental group π1(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1(T)$$\end{document} is hyperbolic and has cohomological dimension 2.
引用
收藏
页码:1229 / 1244
页数:15
相关论文
共 50 条