Random simplicial complexes;
Hypertrees;
Hyperbolic groups;
55U10;
60B99;
20F67;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A hypertree, or Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Q}$$\end{document}-acyclic complex, is a higher-dimensional analogue of a tree. We study random 2-dimensional hypertrees according to the determinantal measure suggested by Lyons. We are especially interested in their topological and geometric properties. We show that with high probability, a random 2-dimensional hypertree T is aspherical, i.e., that it has a contractible universal cover. We also show that with high probability the fundamental group π1(T)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi _1(T)$$\end{document} is hyperbolic and has cohomological dimension 2.
机构:
Tech Univ Berlin, Chair Discrete Math Geometry, Str 17 Juni 136, D-10623 Berlin, GermanyOhio State Univ, 100 Math Tower,231 W 18th Ave, Columbus, OH 43210 USA