Communication-efficient algorithms for decentralized and stochastic optimization

被引:4
|
作者
Guanghui Lan
Soomin Lee
Yi Zhou
机构
[1] Georgia Institute of Technology,Department of Industrial and Systems Engineering
来源
Mathematical Programming | 2020年 / 180卷
关键词
Decentralized optimization; Decentralized machine learning; Communication efficient; Stochastic programming; Nonsmooth functions; Primal–dual method; Complexity; 90C25; 90C06; 90C22; 49M37; 93A14; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. Our major contribution is to present a new class of decentralized primal–dual type algorithms, namely the decentralized communication sliding (DCS) methods, which can skip the inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions. By employing DCS, agents can find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution both in terms of functional optimality gap and feasibility residual in O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon )$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\sqrt{\epsilon })$$\end{document}) communication rounds for general convex functions (resp., strongly convex functions), while maintaining the O(1/ϵ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon ^2)$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(1/\epsilon )$$\end{document}) bound on the total number of intra-node subgradient evaluations. We also present a stochastic counterpart for these algorithms, denoted by SDCS, for solving stochastic optimization problems whose objective function cannot be evaluated exactly. In comparison with existing results for decentralized nonsmooth and stochastic optimization, we can reduce the total number of inter-node communication rounds by orders of magnitude while still maintaining the optimal complexity bounds on intra-node stochastic subgradient evaluations. The bounds on the (stochastic) subgradient evaluations are actually comparable to those required for centralized nonsmooth and stochastic optimization under certain conditions on the target accuracy.
引用
收藏
页码:237 / 284
页数:47
相关论文
共 50 条
  • [41] Double Quantization for Communication-Efficient Distributed Optimization
    Yu, Yue
    Wu, Jiaxiang
    Huang, Longbo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] Double Quantization for Communication-Efficient Distributed Optimization
    Huang, Longbo
    PROCEEDINGS OF THE 13TH EAI INTERNATIONAL CONFERENCE ON PERFORMANCE EVALUATION METHODOLOGIES AND TOOLS ( VALUETOOLS 2020), 2020, : 2 - 2
  • [43] Communication-Efficient Distributed Optimization with Quantized Preconditioners
    Alimisis, Foivos
    Davies, Peter
    Alistarh, Dan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [44] Local Stochastic ADMM for Communication-Efficient Distributed Learning
    ben Issaid, Chaouki
    Elgabli, Anis
    Bennis, Mehdi
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1880 - 1885
  • [45] Gradient Sparsification for Communication-Efficient Distributed Optimization
    Wangni, Jianqiao
    Wang, Jialei
    Liu, Ji
    Zhang, Tong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [46] Communication-efficient algorithms for parallel latent Dirichlet allocation
    Yan, Jian-Feng
    Zeng, Jia
    Gao, Yang
    Liu, Zhi-Qiang
    SOFT COMPUTING, 2015, 19 (01) : 3 - 11
  • [47] Harvesting Curvatures for Communication-Efficient Distributed Optimization
    Cardoso, Diogo
    Li, Boyue
    Chi, Yuejie
    Xavier, Joao
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 749 - 753
  • [48] Communication-Efficient Stochastic Gradient MCMC for Neural Networks
    Li, Chunyuan
    Chen, Changyou
    Pu, Yunchen
    Henao, Ricardo
    Carin, Lawrence
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4173 - 4180
  • [49] DECENTRALIZED EFFICIENT NONPARAMETRIC STOCHASTIC OPTIMIZATION
    Koppel, Alec
    Paternain, Santiago
    Richard, Cedric
    Ribeiro, Alejandro
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 533 - 537
  • [50] Communication-efficient algorithms for parallel latent Dirichlet allocation
    Jian-Feng Yan
    Jia Zeng
    Yang Gao
    Zhi-Qiang Liu
    Soft Computing, 2015, 19 : 3 - 11