Communication-efficient algorithms for decentralized and stochastic optimization

被引:4
|
作者
Guanghui Lan
Soomin Lee
Yi Zhou
机构
[1] Georgia Institute of Technology,Department of Industrial and Systems Engineering
来源
Mathematical Programming | 2020年 / 180卷
关键词
Decentralized optimization; Decentralized machine learning; Communication efficient; Stochastic programming; Nonsmooth functions; Primal–dual method; Complexity; 90C25; 90C06; 90C22; 49M37; 93A14; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. Our major contribution is to present a new class of decentralized primal–dual type algorithms, namely the decentralized communication sliding (DCS) methods, which can skip the inter-node communications while agents solve the primal subproblems iteratively through linearizations of their local objective functions. By employing DCS, agents can find an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-solution both in terms of functional optimality gap and feasibility residual in O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon )$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\sqrt{\epsilon })$$\end{document}) communication rounds for general convex functions (resp., strongly convex functions), while maintaining the O(1/ϵ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1/\epsilon ^2)$$\end{document} (resp., O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(1/\epsilon )$$\end{document}) bound on the total number of intra-node subgradient evaluations. We also present a stochastic counterpart for these algorithms, denoted by SDCS, for solving stochastic optimization problems whose objective function cannot be evaluated exactly. In comparison with existing results for decentralized nonsmooth and stochastic optimization, we can reduce the total number of inter-node communication rounds by orders of magnitude while still maintaining the optimal complexity bounds on intra-node stochastic subgradient evaluations. The bounds on the (stochastic) subgradient evaluations are actually comparable to those required for centralized nonsmooth and stochastic optimization under certain conditions on the target accuracy.
引用
收藏
页码:237 / 284
页数:47
相关论文
共 50 条
  • [31] Communication-Efficient Algorithms for Numerical Quantum Dynamics
    Gustafsson, Magnus
    Kormann, Katharina
    Holmgren, Sverker
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT II, 2012, 7134 : 368 - 378
  • [32] DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization
    Li, Boyue
    Li, Zhize
    Chi, Yuejie
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (03): : 1031 - 1051
  • [33] Communication-Efficient Decentralized Local SGD over Undirected Networks
    Qin, Tiancheng
    Etesami, S. Rasoul
    Uribe, Cesar A.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3361 - 3366
  • [34] Communication-Efficient Learning of Deep Networks from Decentralized Data
    McMahan, H. Brendan
    Moore, Eider
    Ramage, Daniel
    Hampson, Seth
    Aguera y Arcas, Blaise
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 1273 - 1282
  • [35] Communication-efficient decentralized change detection for cognitive wireless networks
    Wang, Hongfei
    Blostein, Steven D.
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [36] Communication-Efficient Decentralized Event Monitoring in Wireless Sensor Networks
    Yuan, Kun
    Ling, Qing
    Tian, Zhi
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (08) : 2198 - 2207
  • [37] Communication-Efficient Decentralized Learning with Sparsification and Adaptive Peer Selection
    Tang, Zhenheng
    Shi, Shaohuai
    Chu, Xiaowen
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 1207 - 1208
  • [38] Communication-efficient Decentralized Machine Learning over Heterogeneous Networks
    Zhou, Pan
    Lin, Qian
    Loghin, Dumitrel
    Ooi, Beng Chin
    Wu, Yuncheng
    Yu, Hongfang
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 384 - 395
  • [39] A Decentralized Communication-Efficient Federated Analytics Framework for Connected Vehicles
    Zhao, Liang
    Valero, Maria
    Pouriyeh, Seyedamin
    Li, Fangyu
    Guo, Lulu
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10856 - 10861
  • [40] Communication-Efficient Distributed PCA by Riemannian Optimization
    Huang, Long-Kai
    Pan, Sinno Jialin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119